Composition operators on weighted Bergman spaces induced by doubling weights  

在线阅读下载全文

作  者:Xin Guo Maofa Wang 

机构地区:[1]School of Mathematics and Statistics,Wuhan University,Wuhan,430072,China

出  处:《Science China Mathematics》2024年第7期1571-1598,共28页中国科学(数学)(英文版)

基  金:supported by National Natural Science Foundation of China (Grant Nos. 12101467 and 12171373)。

摘  要:Given a doubling weightωon the unit disk D,let A_(ω)^(p) be the space of all the holomorphic functions f,where∥f∥A_(ω)^(p):=(∫_(D)|f(z)|_(p)ω(z)dA(z))^(1/p)<∞.We completely characterize the topological connectedness of the set of composition operators on A_(ω)^(p).As an application,we construct an interesting example which reveals that two composition operators on A_(α)^(p) in the same path component may fail to have a compact difference and give a negative answer to the Shapiro-Sundberg question in the(standard)weighted Bergman space.In addition,we completely describe the central compactness of any finite linear combinations of composition operators on A_(ω)^(p) in three terms:a Julia-Carathéodory-type function-theoretic characterization,a power-type characterization,and a Carleson-type measure-theoretic characterization.

关 键 词:composition operator linear combination linearly connected weighted Bergman space doubling weight 

分 类 号:O177[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象