检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Jinye Shen Fanhai Zeng Martin Stynes
机构地区:[1]School of Mathematics,Southwestern University of Finance and Economics,Chengdu,611130,China [2]School of Mathematics,Shandong University,Jinan,250100,China [3]Applied and Computational Mathematics Division,Beijing Computational Science Research Center,Beijing,100193,China
出 处:《Science China Mathematics》2024年第7期1641-1664,共24页中国科学(数学)(英文版)
基 金:supported by National Natural Science Foundation of China (Grant Nos. 12101509, 12171283, 12171025 and NSAF-U1930402);the Science Foundation Program for Distinguished Young Scholars of Shandong (Overseas) (Grant No. 2022HWYQ-045)。
摘 要:Fractional initial-value problems(IVPs) and time-fractional initial-boundary value problems(IBVPs), each with a Caputo temporal derivative of order α ∈(0, 1), are considered. An averaged variant of the well-known L1 scheme is proved to be O(N^(-2)) convergent for IVPs on suitably graded meshes with N points, thereby improving the O(N^(-(2-α))) convergence rate of the standard L1 scheme. The analysis relies on a delicate decomposition of the temporal truncation error that yields a sharp dependence of the order of convergence on the degree of mesh grading used. This averaged L1 scheme can be combined with a finite difference or piecewise linear finite element discretization in space for IBVPs, and under a restriction on the temporal mesh width, one gets again O(N^(-2)) convergence in time, together with O(h^(2)) convergence in space,where h is the spatial mesh width. Numerical experiments support our results.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.229