机构地区:[1]Department of Materials Science&Engineering,CAS Key Lab of Materials for Energy Conversion,Anhui Laboratory of Advanced Photon Science and Technology,University of Science and Technology of China,Hefei 230026,China [2]Department of Physics and School of Emerging Technology,University of Science and Technology of China,Hefei 230026,China [3]Anhui Key Laboratory of Condensed Matter Physics at Extreme Conditions,High Magnetic Field Laboratory,Chinese Academy of Sciences,Hefei 230031,China [4]Department of Materials Science and Engineering,Southern University of Science and Technology,Shenzhen 518055,China [5]International Center for Quantum Design of Functional Materials(ICQD),University of Science and Technology of China,Hefei 230026,China
出 处:《Science China Materials》2024年第7期2201-2209,共9页中国科学(材料科学)(英文版)
基 金:supported by the Innovation Program for Quantum Science and Technology(2021ZD0302800);the National Natural Science Foundation of China(11904350,12174362);Anhui Provincial Natural Science Foundation(2008085QA30);Shenzhen Science and Technology Program(KQTD20190929173815000);Guangdong Innovative and Entrepreneurial Research Team Program(2019ZT08C044);the National Synchrotron Radiation Laboratory(KY2060000177).
摘 要:目前,Ta_(2)M3Te_(5)(M=Ni,Pd)层状范德华化合物可承载各种奇异电子态,且具有表现出非平凡输运现象的诱人潜力,因而重新引起人们的兴趣.其特征有Luttinger液体、量子自旋霍尔效应、高阶拓扑结构和超导电性.本文中,我们报道了单晶Ta_(2)Ni_(3)Te_(5)的合成,并揭示了其在每个具有准一维键合特征的层内的多重平面内各向异性.我们的技术结合了偏振拉曼光谱、角度分辨光电发射光谱、第一性原理计算和电/磁输运测量的能力.链状低对称层状结构的声子振动产生了高度各向异性的拉曼响应,不同的链内和链间键合特性导致电子带和声学声子的各向异性色散,这共同导致[100]和[001]方向之间的巨大平面内迁移率各向异性(2000%).这一结果与我们的电输运和霍尔效应测量结果相符.因此,沿不同平面内方向的输运行为也表现出不同的温度和磁场依赖性.本工作揭示的丰富的面内各向异性表明,Ta_(2)Ni_(3)Te_(5)是探索新型二维各向异性电子动力学的一个很有前途的平台,在下一代纳米电子器件中具有潜在的应用前景.Recently,layered van der Waals compounds of Ta_(2)M3Te_(5)(M=Ni,Pd)have garnered revived interest due to their appealing potentials to host various exotic electronic states and exhibit nontrivial transport phenomena,such as the Luttinger liquid,quantum spin Hall effect,high-order topology,and superconductivity.In this paper,we report the synthesis of single-crystalline Ta_(2)Ni_(3)Te_(5) and reveal multifold in-plane anisotropic properties rooted in its quasi-one-dimensional bonding feature within each constituent layer.Our technique combines the power of polarized Raman spectroscopy,angle-resolved photoemission spectroscopy,first-principles calculations,and electrical/magneto-transport measurements.The phononic vibrations of chain-like low symmetric layered structure give rise to a highly anisotropic Raman response.The distinct intra-and inter-chain bonding characteristics lead to anisotropic dispersion of both electronic bands and acoustic phonons,which collectively result in giant in-plane mobility anisotropy(2000%)between the[100]and[001]directions,as verified by our electrical transport and Hall effect measurements.Accordingly,the transport behaviors along different in-plane directions also exhibit distinct temperature and magnetic-field dependence.The rich inplane anisotropy revealed by the present work shows that Ta_(2)Ni_(3)Te_(5) is a promising platform for exploring novel twodimensional anisotropic electronic dynamics with potential applications in next-generation nanoelectronic devices.
关 键 词:in-plane anisotropy vibrational and electronic transport anisotropy quasi-1D layered structure first-principles calculations angle-resolved photoemission spectroscopy(ARPES)
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...