检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:沈雪红 SHEN Xuehong(College of Electronic and Communication Engineering,Zhejiang Technical College of Posts and Telecom,Shaoxing,Zhejiang 312366)
机构地区:[1]浙江邮电职业技术学院电子与通信工程学院,浙江绍兴312366
出 处:《绵阳师范学院学报》2024年第8期93-97,共5页Journal of Mianyang Teachers' College
基 金:浙江省教育厅科研项目(Y202250907)。
摘 要:针对配电网运行过程中设备故障辨识难度大、处理不及时等问题,通过将长期记忆引入到深度学习模型,提出了一种改进深度学习模型,设计了基于改进深度学习的配电网故障辨识系统.该系统包括数据源、接口层、数据库、数据服务、计算层和信息层,实现对配电网故障的准确辨识预警.实验结果表明:提出的改进深度学习模型与现有方法相比,故障预测精度能够达到94.19%,优于现有模型,具有良好的应用价值.In response to the problems of difficulty in identifying equipment faults and delayed processing dur-ing the operation of distribution networks,an improved deep learning model was proposed by introducing long-term memory into the deep learning model.A distribution network fault identification system based on improved deep learning was designed.The system included a data source,interface layer,database,data service,computing layer,and information layer to achieve accurate identification and warning of distribution network faults.The experimental results showed that the proposed improved deep learning model had a fault prediction accuracy of 94.19%com-pared to existing methods,which is superior to existing models.This study provides guidance for distribution net-work fault identification and warning,and shows its application value.
分 类 号:TM732[电气工程—电力系统及自动化]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.90