Sequential decay analysis of^(235)U(n^(th),f)reaction using fragmentation approach  

在线阅读下载全文

作  者:Nitin Sharma Ashutosh Kaushik Manoj K.Sharma 

机构地区:[1]School of Physics and Materials Science,Thapar Institute of Engineering&Technology,Patiala-147004,Punjab,India

出  处:《Chinese Physics C》2024年第6期145-154,共10页中国物理C(英文版)

基  金:financial support from the Department of Science and Technology(DST),New Delhi,India,in the form of a research project(File no.CRG/2021/001144)。

摘  要:Numerous experimental and theoretical observations have concluded that the probability of the three fragment emission(ternary fission)or binary fission increases when one proceeds towards the heavy mass region of nuclear periodic table.Many factors affect fragment emission,such as the shell effect,deformation,orientation,and fissility parameter.Binary and ternary fissions are observed for both ground and excited states of the nuclei.The collinear cluster tripartition(CCT)channel of the^(235)U(n^(th),f)reaction is studied,and we observe that the CCT may be a sequential or simultaneous emission phenomenon.To date,different approaches have been introduced to study the CCT process as a simultaneous or sequential process,but the decay dynamics of these modes have not been not fully explored.Identifying the three fragments of the sequential process and exploring their related dynamics using an excitation energy dependent approach would be of further interest.Hence,in this study,we investigate the sequential decay mechanism of the^(235)U(n^(th),f)reaction using quantum mechanical fragmentation theory(QMFT).The decay mechanism is considered in two steps,where initially,the nucleus splits into an asymmetric channel.In the second step,the heavy fragment obtained in the first step divides into two fragments.Stage I analysis is conducted by calculating the fragmentation potential and preformation probability for the spherical and deformed choices of the decaying fragments.The most probable fragment combination of stage I are identified with respect to the dips in the fragmentation structure and the corresponding maxima of the preformation probability(P0).The light fragments of the identified decay channels(obtained in step I)agree closely with the experimentally observed fragments.The excitation energy of the decay channel is calculated using an iteration process.The excitation energy is shared using an excitation energy dependent level density parameter.The obtained excitation energy of the identified heavy fragments is fur

关 键 词:FISSION cluster radioactivity ternary fission spontaneous fission cluster model total kinetic energy preformation probability 

分 类 号:O571.3[理学—粒子物理与原子核物理]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象