检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:马海成[1] 攸晓杰 MA Haicheng;YOU Xiaojie(School of Mathematics and Statistics,Qinghai Minzu University,Xining 810007,Qinghai,China)
机构地区:[1]青海民族大学数学与统计学院,青海西宁810007
出 处:《山东大学学报(理学版)》2024年第6期19-24,共6页Journal of Shandong University(Natural Science)
基 金:国家自然科学基金资助项目(11561056);青海省自然科学基金资助项目(2022-ZJ-924)。
摘 要:设G是有n个点的图,μ(G,x)表示图G的匹配多项式,M_(1)(G)表示多项式μ(G,x)的最大根,称为匹配最大根。把k条路P_(a_(1)+2),P_(a_(2)+2),…,P_(a_(k)+2)的左右2个端点分别黏结成2个点后得到的图称为k-桥图,记为θ_(k)(a_(1),a_(2),…,a_(k))。有n个点且每一条路上的点数几乎相等的k-桥图记为θ_(k)^(*)(n)。证明了:在n个点的k-桥图中匹配最大根取得最小的图是θ_(k)^(*)(n),最大的图是θ_(k)(k-20,1,1…,1,n-k);在n个点的任意k-桥图中匹配最大根取得最小的图是2-桥图(圈)C_(n),最大的图是(n-1)-桥图θ_(n-1)(0,1,1…,1)。Let G be a graph with n vertices,andμ(G,x)denote the matching polynomial of graph G,M_(1)(G)denote the maximum root of the polynomialμ(G,x),which is called the matching maximum root.By identifying the first vertices and the last vertices of k paths P_(a_(1)+2),P_(a_(2)+2),…,P_(a_(k)+2),respectively,the resulting graph is called the k-bridge graphs,denoted byθ_(k)(a_(1),a_(2),…,a_(k)).A kbridge graph with n vertices and nearly equal number of vertices on each paths is denoted asθ_(k)^(*)(n).The following conclusions are proved.In all k-bridge graphs with n vertices,the matching maximum root to get the smallest graph isθ_(k)^(*)(n),and the biggest graph isθk(k-20,1,1,…,1,n-k).In any k-bridge graphs with n vertices,the graph that the matching maximum root to get the smallest is 2-bridge graphs Cn(cycle),and the biggest one is(n-1)-bridge graphθ_(n-1)(0,1,1…,1).
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.7