基于手机信令数据的典型日出行OD矩阵分析  

Analysis of Typical Daily Travel OD Matrix Based on Mobile Phone Signaling Data

在线阅读下载全文

作  者:姜宇舟 雷鸣涛[2] 顾名祥 崔文霖 段征宇[1] 吉小进 JIANG Yuzhou;LEI Mingtao;GU Mingxiang;CUI Wenlin;DUAN Zhengyu;JI Xiaojin(Key Laboratory of Road and Transportation engineering,Ministry of Education,Tongji University,Shanghai 201804;Gansu Provincial Highway Network Planning Office,Lanzhou 730030;Beijing Bridata Technology Co.,Ltd.,Beijing 100102)

机构地区:[1]同济大学道路与交通工程教育部重点实验室,上海201804 [2]甘肃省公路网规划办公室,兰州730030 [3]北京明树数据科技有限公司,北京100102

出  处:《综合运输》2024年第6期123-129,共7页China Transportation Review

基  金:甘肃省交通运输厅科技项目:基于多源大数据融合的甘肃省公路出行OD分析和交通模型研究(项目编号2022-11)。

摘  要:从连续观测数据中识别典型的居民出行分布,对城市交通模型构建和交通规划决策具有重要意义。本文以兰州为例,使用连续一个月的手机信令数据,提取日出行OD矩阵;然后使用主成分分析法(PCA)对时序OD矩阵进行降维,并使用动态模糊C-均值聚类(DFCM)识别得到3种典型的日OD矩阵:工作日、休假日、特殊工作日。其中,工作日典型OD矩阵出行总量最大,出行空间分布呈现显著的由市中心至外围片区的放射状;休假日典型OD矩阵空间分布在各片区较无规律,以中长途出行为主,与居民的旅游休闲、娱乐消费等活动需求有关;特殊工作日大部分与节假日或周末相邻,出行总量相对工作日通勤需求较少,相对于工作日通勤主要增长部分集中在城市核心片区。Identifying the typical resident trip distribution from continuous observational data is of great significance for constructing urban traffic models and making transportation planning decisions.Taking Lanzhou as an example,this paper utilizes one month of continuous mobile phone signaling data to extract daily OD matrices.Subsequently,principal component analysis(PCA)is applied to reduce the dimensionality of the temporal OD matrix,and dynamic fuzzy C-means clustering(DFCM)is employed to identify three typical daily OD matrices:workdays,holidays,and special workdays.Among them,the typical OD matrix for weekdays has the largest total number of trips,with a spatial distribution of trips that shows a significant radial pattern from the city center to the peripheral areas;the spatial distribution of the typical OD matrix for holidays is relatively irregular across various regions,focusing on medium to long-distance trips,which is related to residents'demand for tourism,leisure,entertainment consumption,and other activities;the majority of special working days are adjacent to holidays or weekends,with a relatively lower total number of trips compared to regular weekdays’commuting demands.In contrast to regular weekday commuting,the significant increase in trips is concentrated in the core urban areas.

关 键 词:出行OD矩阵 手机信令数据 主成分分析 动态模糊C-均值聚类 城市交通规划 

分 类 号:U121[交通运输工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象