检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:黄建平 陈斌[1,2] Jianping Huang;Bin Chen(Collaborative Innovation Center for Western Ecological Safety,Lanzhou 730000,China;College of Atmospheric Sciences,Lanzhou University,Lanzhou 730000,China)
机构地区:[1]西部生态安全省部共建协同创新中心,兰州730000 [2]兰州大学大气科学学院,兰州730000
出 处:《科学通报》2024年第17期2336-2343,共8页Chinese Science Bulletin
基 金:国家自然科学基金(42041004)资助.
摘 要:天气预报一直是一个复杂而充满挑战的领域.由于大气系统是高度非线性,即使极其微小的变化也可能对大气运动产生不可预知的扰动,这种大气中普遍存在的“蝴蝶效应”也正是天气预报的难点所在[1].长期以来,天气预报主要依赖于传统的数值天气预报模型.随着具有非线性学习能力的深度学习技术的崛起,气象领域开始应用人工智能模型.人工智能(artificial intelligence,AI)模型在短时预报、气象图像处理以及气候模拟等在内的多个气象领域的应用均有重要的突破[2,3].Weather forecasting is a complex and challenging task.Numerical Weather Prediction(NWP),grounded in atmospheric dynamics,has long supported modern forecasting efforts.However,traditional NWP models often fall short due to the nonlinear nature of atmospheric systems.Enter Artificial Intelligence(AI):With its capacity for nonlinear learning,AI is transforming weather forecasting by introducing precise,data-driven approaches.Notably,Science named“The AI weather forecaster arrives”as one of the top ten scientific breakthroughs of 2023.It highlighted how meteorologists use advanced computing to model atmospheric futures,a practice that previously depended on vast computational resources to solve complex hydrodynamic equations.AI is revolutionizing this field by adeptly handling large datasets,learning autonomously,and generalizing across different scenarios,thus efficiently managing the complexities of atmospheric systems.Prominent tech companies like Google,Huawei,and NVIDIA have developed sophisticated AI models that now forecast weather with an accuracy that meets or surpasses that of traditional models,all while reducing computational demands.Despite these advancements,AI’s role in weather forecasting is not without its challenges.As noted by Science,AI models do not directly solve atmospheric equations but rather rely on decades of historical data,which can limit their effectiveness in predicting extreme weather events.These models often struggle with interpretability,data uncertainty,transferability,and the precise prediction of severe conditions.They cannot yet operate independently of numerical models.While AI can effectively predict stable conditions and moderate changes,capturing and forecasting sudden,severe weather events remains a challenge.In contrast,numerical models,with their solid mathematical and theoretical bases,are better suited to understanding the physical processes behind these abrupt changes,although they too have limitations in accuracy.Numerical models and AI models each contribute un
关 键 词:人工智能技术 图像处理 天气预报 气象领域 蝴蝶效应 大气运动 短时预报 气候模拟
分 类 号:P45[天文地球—大气科学及气象学] TP18[自动化与计算机技术—控制理论与控制工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.38