检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Wenmin Lin Min Zhu Xinyi Zhou Ruowei Zhang Xiaoran Zhao Shigen Shen Lu Sun
机构地区:[1]Alibaba Business School,Hangzhou Normal University,Hangzhou 311121,China [2]Blockchain Laboratory of Agricultural Vegetables,Weifang University of Science and Technology,Shouguang 262700,China [3]School of Computer Science,Qufu Normal University,Rizhao 276827,China [4]School of Information Engineering,Huzhou University,Huzhou 313000,China
出 处:《Tsinghua Science and Technology》2024年第3期897-910,共14页清华大学学报(自然科学版(英文版)
基 金:supported by the Natural Science Foundation of Zhejiang Province(Nos.LQ21F020021 and LZ21F020008);Zhejiang Provincial Natural Science Foundation of China(No.LZ22F020002);the Research Start-up Project funded by Hangzhou Normal University(No.2020QD2035).
摘 要:Service recommendation provides an effective solution to extract valuable information from the huge and ever-increasing volume of big data generated by the large cardinality of user devices.However,the distributed and rich multi-source big data resources raise challenges to the centralized cloud-based data storage and value mining approaches in terms of economic cost and effective service recommendation methods.In view of these challenges,we propose a deep neural collaborative filtering based service recommendation method with multi-source data(i.e.,NCF-MS)in this paper,which adopts the cloud-edge collaboration computing paradigm to build recommendation model.More specifically,the Stacked Denoising Auto Encoder(SDAE)module is adopted to extract user/service features from auxiliary user profiles and service attributes.The Multiple Layer Perceptron(MLP)module is adopted to integrate the auxiliary user/service features to train the recommendation model.Finally,we evaluate the effectiveness of the NCF-MS method on three public datasets.The experimental results show that our proposed method achieves better performance than existing methods.
关 键 词:deep neural collaborative filtering multi-source data cloud-edge collaboration application stackeddenoising auto encoder multiple layer perceptron
分 类 号:TP181[自动化与计算机技术—控制理论与控制工程] TP311.13[自动化与计算机技术—控制科学与工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.117