Deep Reinforcement Learning or Lyapunov Analysis?A Preliminary Comparative Study on Event-Triggered Optimal Control  

在线阅读下载全文

作  者:Jingwei Lu Lefei Li Qinglai Wei Fei-Yue Wang 

机构地区:[1]IEEE [2]the Department of Industrial Engineering,Tsinghua University,Beijing 100084,China [3]The State Key Laboratory for Management and Control of Complex Systems,Institute of Automation,Chinese Academy of Sciences,Beijing 100190,China

出  处:《IEEE/CAA Journal of Automatica Sinica》2024年第7期1702-1704,共3页自动化学报(英文版)

基  金:supported by the Motion G,Inc.Collaborative Research Project for Fundamental Modeling and Parallel Drive-Control of Servo Drive Systems。

摘  要:Dear Editor,This letter develops a novel method to implement event-triggered optimal control(ETOC) for discrete-time nonlinear systems using parallel control and deep reinforcement learning(DRL), referred to as Deep-ETOC. The developed Deep-ETOC method introduces the communication cost into the performance index through parallel control, so that the developed method enables control systems to learn ETOC policies directly without triggering conditions.

关 键 词:DEEP LETTER enable 

分 类 号:TP18[自动化与计算机技术—控制理论与控制工程] TP13[自动化与计算机技术—控制科学与工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象