检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Dawei ZHANG Peng WANG Yongfeng DONG Linhao LI Xin LI
机构地区:[1]School of Artificial Intelligence,Hebei University of Technology,Tianjin 300401,China [2]Lane Department of Computer Science and Electrical Engineering,West Virginia University,Morgantown,WV 26506-6109,USA
出 处:《Frontiers of Computer Science》2024年第2期93-106,共14页中国计算机科学前沿(英文版)
基 金:supported in part by the National Natural Science Foundation of China (Grant No.61902106);in part by the Natural Science Foundation of Hebei Province (No.F2020202028).
摘 要:Moving target detection is one of the most basic tasks in computer vision.In conventional wisdom,the problem is solved by iterative optimization under either Matrix Decomposition(MD)or Matrix Factorization(MF)framework.MD utilizes foreground information to facilitate background recovery.MF uses noise-based weights to fine-tune the background.So both noise and foreground information contribute to the recovery of the background.To jointly exploit their advantages,inspired by two framework complementary characteristics,we propose to simultaneously exploit the advantages of these two optimizing approaches in a unified framework called Joint Matrix Decomposition and Factorization(JMDF).To improve background extraction,a fuzzy factorization is designed.The fuzzy membership of the background/foreground association is calculated during the factorization process to distinguish their contributions of both to background estimation.To describe the spatio-temporal continuity of foreground more accurately,we propose to incorporate the first order temporal difference into the group sparsity constraint adaptively.The temporal constraint is adjusted adaptively.Both foreground and the background are jointly estimated through an effective alternate optimization process,and the noise can be modeled with the specific probability distribution.The experimental results of vast real videos illustrate the effectiveness of our method.Compared with the current state-of-the-art technology,our method can usually form the clearer background and extract the more accurate foreground.Anti-noise experiments show the noise robustness of our method.
关 键 词:matrixdecomposition matrix factorization generalized sparsity noise modeling
分 类 号:TP212[自动化与计算机技术—检测技术与自动化装置]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.49