检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Shiwei LU Ruihu LI Wenbin LIU
机构地区:[1]Fundamentals Department,Air Force Engineering University,Xi’an 710051,China [2]Institute of Advanced Computational Science and Technology,Guangzhou University,Guangzhou 510006,China
出 处:《Frontiers of Computer Science》2024年第2期107-122,共16页中国计算机科学前沿(英文版)
基 金:supported by the National Natural Science Foundation of China (Grand Nos.62072128,11901579,11801564);the Natural Science Foundation of Shaanxi (2022JQ-046,2021JQ-335,2021JM-216).
摘 要:Federated learning(FL)has emerged to break data-silo and protect clients’privacy in the field of artificial intelligence.However,deep leakage from gradient(DLG)attack can fully reconstruct clients’data from the submitted gradient,which threatens the fundamental privacy of FL.Although cryptology and differential privacy prevent privacy leakage from gradient,they bring negative effect on communication overhead or model performance.Moreover,the original distribution of local gradient has been changed in these schemes,which makes it difficult to defend against adversarial attack.In this paper,we propose a novel federated learning framework with model decomposition,aggregation and assembling(FedDAA),along with a training algorithm,to train federated model,where local gradient is decomposed into multiple blocks and sent to different proxy servers to complete aggregation.To bring better privacy protection performance to FedDAA,an indicator is designed based on image structural similarity to measure privacy leakage under DLG attack and an optimization method is given to protect privacy with the least proxy servers.In addition,we give defense schemes against adversarial attack in FedDAA and design an algorithm to verify the correctness of aggregated results.Experimental results demonstrate that FedDAA can reduce the structural similarity between the reconstructed image and the original image to 0.014 and remain model convergence accuracy as 0.952,thus having the best privacy protection performance and model training effect.More importantly,defense schemes against adversarial attack are compatible with privacy protection in FedDAA and the defense effects are not weaker than those in the traditional FL.Moreover,verification algorithm of aggregation results brings about negligible overhead to FedDAA.
关 键 词:federated learning privacy protection adversarial attacks aggregated rule correctness verification
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.49