检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Mingzhi YUAN Kexue FU Zhihao LI Manning WANG
机构地区:[1]Digital Medical Research Center,School of Basic Medical Sciences,Fudan University,Shanghai 200032,China [2]Shanghai Key Laboratory of Medical Image Computing and Computer Assisted Intervention,Shanghai 200032,China
出 处:《Frontiers of Computer Science》2024年第2期147-155,共9页中国计算机科学前沿(英文版)
基 金:supported by the National Natural Science Foundation of China (Grant No.62076070);the Science and Technology Innovation Action Plan of Shanghai (No.23S41900400).
摘 要:Estimating rigid transformation using noisy correspondences is critical to feature-based point cloud registration.Recently,a series of studies have attempted to combine traditional robust model fitting with deep learning.Among them,DHVR proposed a hough voting-based method,achieving new state-of-the-art performance.However,we find voting on rotation and translation simultaneously hinders achieving better performance.Therefore,we proposed a new hough voting-based method,which decouples rotation and translation space.Specifically,we first utilize hough voting and a neural network to estimate rotation.Then based on good initialization on rotation,we can easily obtain accurate rigid transformation.Extensive experiments on 3DMatch and 3DLoMatch datasets show that our method achieves comparable performances over the state-of-the-art methods.We further demonstrate the generalization of our method by experimenting on KITTI dataset.
关 键 词:point cloud registration robust model fitting deep learning hough voting
分 类 号:TP391.41[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.28