检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《Frontiers of physics》2024年第3期163-165,共3页物理学前沿(英文版)
摘 要:Since the discovery of generalized Snell’s law in 2011[1],metasurfaces have opened up the mainstream of arbitrary wavefront manipulation in electromagnetism.Using a gradient-index metasurface,the parallel wavenumber kx of reflected wave can be not equal to the incident one(kx=ξ+k0sinθi,where k0 andθi are the incident wavenumber and angle,andξis the phase gradient of metasurface in its supercell)[1].Whenξ>k0,the reflected wave becomes a surface wave bounded on the metasurface(where|kx|>k0,kz is imaginary,and z is normal to the metasurface)[2].However,as research of metasurfaces continually evolves,some articles have pointed out that such graded metasurfaces suffer from a series of problems[3-6].In particular,multiple metallic resonators are adopted in a subwavelength supercell,resulting in impedance mismatch,moderate conversion efficiency,wave absorption,and fabrication complexity.Hence,although the approach of graded metasurfaces has been demonstrated in the microwave regime,it is hard to extend to infrared and optical ranges with shorter wavelengths.To solve this problem,Ra’di et al.[7]devised metagratings with periodic arrays of bianisotropic scatterers and showed that they enable wave front engineering with unitary efficiency and significantly lower fabrication demands.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.191