Simulations of superconducting quantum gates by digital flux tuner for qubits  

在线阅读下载全文

作  者:耿霄 何楷泳 刘建设 陈炜 Xiao Geng;Kaiyong He;Jianshe Liu;Wei Chen(Laboratory of Superconducting Quantum Information Processing,School of Integrated Circuits,Tsinghua University,Beijing 100084,China;Beijing Innovation Center for Future Chips,Tsinghua University,Beijing 100084,China;Beijing National Research Center for Information Science and Technology,Beijing 100084,China)

机构地区:[1]Laboratory of Superconducting Quantum Information Processing,School of Integrated Circuits,Tsinghua University,Beijing 100084,China [2]Beijing Innovation Center for Future Chips,Tsinghua University,Beijing 100084,China [3]Beijing National Research Center for Information Science and Technology,Beijing 100084,China26

出  处:《Chinese Physics B》2024年第7期210-222,共13页中国物理B(英文版)

摘  要:The interconnection bottleneck caused by limitations of cable number, inner space and cooling power of dilution refrigerators has been an outstanding challenge for building scalable superconducting quantum computers with the increasing number of qubits in quantum processors. To surmount such an obstacle, it is desirable to integrate qubits with quantum–classical interface(QCI) circuits based on rapid single flux quantum(RSFQ) circuits. In this work, a digital flux tuner for qubits(DFTQ) is proposed for manipulating flux of qubits as a crucial part of the interface circuit. A schematic diagram of the DFTQ is presented, consisting of a coarse tuning unit and a fine-tuning unit for providing magnetic flux with different precision to qubits. The method of using DFTQ to provide flux for gate operations is discussed from the optimization of circuit design and input signal. To verify the effectiveness of the method, simulations of a single DFTQ and quantum gates including a Z gate and an iSWAP gate with DFTQs are performed for flux-tunable transmons. The quantum process tomography corresponding to the two gates is also carried out to analyze the sources of gate error. The results of tomography show that the gate fidelities independent of the initial states of the Z gate and the iSWAP gate are 99.935% and 99.676%,respectively. With DFTQs inside, the QCI would be a powerful tool for building large-scale quantum computers.

关 键 词:quantum computation superconducting electronics quantum control 

分 类 号:O413[理学—理论物理] TP38[理学—物理]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象