Ballistic target recognition based on multiple data representations and deep-learning algorithms  

在线阅读下载全文

作  者:Lixun HAN Cunqian FENG Xiaowei HU Sisan HE Xuguang XU 

机构地区:[1]Air and Missile Defense College,Air Force Engineering University,Xi’an 710051,China [2]College of Information and Communication,National University of Defense Technology,Wuhan 430010,China

出  处:《Chinese Journal of Aeronautics》2024年第6期167-181,共15页中国航空学报(英文版)

基  金:supported by the Natural Science Basic Research Plan in Shaanxi Province of China(No.2023-JCYB-491).

摘  要:Target recognition is a significant part of a Ballistic Missile Defense System(BMDS).However,most existing ballistic target recognition methods overlook the impact of data representation on recognition outcomes.This paper focuses on systematically investigating the influences of three novel data representations in the Range-Doppler(RD)domain.Initially,the Radar Cross Section(RCS)and micro-Doppler(m-D)characteristics of a cone-shaped ballistic target are analyzed.Then,three different data representations are proposed:RD data,RD sequence tensor data,and RD trajectory data.To accommodate various data inputs,deep-learning models are designed,including a two-Dimensional Residual Dense Network(2D RDN),a three-Dimensional Residual Dense Network-Gated Recurrent Unit(3D RDN-GRU),and a Dynamic Trajectory Recognition Network(DTRN).Finally,an Electromagnetic(EM)computation dataset is collected to verify the performances of the networks.A broad range of experimental results demonstrates the effectiveness of the proposed framework.Moreover,several key parameters of the proposed networks and datasets are extensively studied in this research.

关 键 词:Ballistic target MICRO-DOPPLER Deep learning RANGE-DOPPLER Radar target recognition 

分 类 号:E927[军事—军事装备学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象