检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:曾孟佳 杨卓 黄旭[1,2,3] Zeng Mengjia;Yang Zhuo;Huang Xu(School of Information Engineering Huzhou University,Huzhou 313000,China;School of Electronic Information Huzhou College,Huzhou 313000,China;Huzhou Key Laboratory of Urban Multidimensional Perception and Intelligent Computing,Huzhou 313000,China)
机构地区:[1]湖州师范学院信息工程学院,湖州313000 [2]湖州学院电子信息学院,湖州313000 [3]湖州市城市多维感知与智能计算重点实验室,湖州313000
出 处:《现代计算机》2024年第9期17-23,共7页Modern Computer
基 金:教育部人文社会科学一般项目(20YJCZH005);浙江省湖州市工业攻关项目(2018GG29);国家级大学生创新创业训练项目(202313287007)。
摘 要:针对传统静态词向量如glove无法表示多义词的缺陷,以及现有微博情感分类模型对于隐式评论文本特征提取能力不足等问题,提出了一种结合RoBERTa和BiGRU-AT的微博评论情感分类模型。用预训练模型RoBERTa得到融合句子语境的动态词向量;然后采用BiGRU-AT模块的双向门控循环单元提取文本序列特征、注意力机制捕获文本序列中的关键情感信息;最后利用归一化指数函数输出情感倾向结果。实验结果显示,该模型与现有常用经典模型相比,精确率和F1值均取得了较好的效果,具有较好的实用价值。Aiming to address the limitations of traditional static word vectors,such as glove,in representing polysemous words,as well as the insufficient capability of existing Weibo sentiment classification models in extracting implicit textual features from comments,a novel Weibo comment sentiment classification model that combines RoBERTa and BiGRU-AT is proposed.The pre-trained model RoBERTa is utilized to obtain dynamically contextualized word vectors that incorporate sentence context.Subse-quently,the BiGRU-AT module,consisting of bidirectional gated recurrent units,is employed to extract textual sequential features,while an attention mechanism is employed to capture crucial information within the text sequence.Finally,sentiment classification is performed using Softmax.Experimental results demonstrate that compared to commonly used conventional models,the proposed model achieves superior performance in terms of precision and F1 score,indicating its practical utility.
关 键 词:文本情感分类 RoBERTa BiGRU 注意力机制
分 类 号:TP391.1[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.179