检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Huamei Qi Wenhui Yang Wenqin Zou Yuxuan Hu
机构地区:[1]School of Electronic Information,Central South University,Changsha,Hunan,China [2]School of Computer Science and Engineering,Central South University,Changsha,Hunan,China
出 处:《Quantitative Biology》2024年第2期205-214,共10页定量生物学(英文版)
基 金:Natural Science Foundation of Hunan Province,Grant/Award Number:2022JJ30755。
摘 要:Effective clinical trials are necessary for understanding medical advances but early termination of trials can result in unnecessary waste of resources.Survival models can be used to predict survival probabilities in such trials.However,survival data from clinical trials are sparse,and DeepSurv cannot accurately capture their effective features,making the models weak in generalization and decreasing their prediction accuracy.In this paper,we propose a survival prediction model for clinical trial completion based on the combination of denoising autoencoder(DAE)and DeepSurv models.The DAE is used to obtain a robust representation of features by breaking the loop of raw features after autoencoder training,and then the robust features are provided to DeepSurv as input for training.The clinical trial dataset for training the model was obtained from the ClinicalTrials.gov dataset.A study of clinical trial completion in pregnant women was conducted in response to the fact that many current clinical trials exclude pregnant women.The experimental results showed that the denoising autoencoder and deep survival regression(DAE-DSR)model was able to extract meaningful and robust features for survival analysis;the C-index of the training and test datasets were 0.74 and 0.75 respectively.Compared with the Cox proportional hazards model and DeepSurv model,the survival analysis curves obtained by using DAE-DSR model had more prominent features,and the model was more robust and performed better in actual prediction.
关 键 词:clinical trials denoising autoencoder DeepSurv experimental termination survival analysis
分 类 号:R318[医药卫生—生物医学工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.49