基于VOSviewer和CiteSpace知识图谱的脓毒症相关急性呼吸窘迫综合征可视化分析  

Visual analysis of sepsis-related acute respiratory distress syndrome based on knowledge graph of VOSviewer and CiteSpace

在线阅读下载全文

作  者:王丽辉[1] 张伟俊 皋源[1] 向淑麟 余跃天[1,2,5] WANG Li-hui;ZHANG Wei-jun;GAO Yuan;XIANG Shu-lin;YU Yue-tian(Department of Critical Care Medicine,Renji Hospital,School of Medicine,Shanghai Jiao Tong University,Shanghai 200001,China;Guangxi Health Commission Key Laboratory of Diagnosis and Treatment of Acute Respiratory Distress Syndrome,Nanning 530021,China;Research Center of Communicable and Severe Diseases,Guangxi Academy of Medical Sciences,Nanning 530021,China;Department of Intensive Care Unit,The Peoples Hospital of Guangxi Zhuang Autonomous Region,Nanning 530021,China;Key Laboratory of Multiple Organ Failure of Ministry of Education,Hangzhou 310027,China)

机构地区:[1]上海交通大学医学院附属仁济医院重症医学科,上海200001 [2]广西急性呼吸窘迫综合征诊治研究重点实验室,广西南宁530021 [3]广西医学科学院传染病与急危重症救治研究所,广西南宁530021 [4]广西壮族自治区人民医院重症医学科,广西南宁530021 [5]国家教育部多脏器衰竭预警与干预重点实验室,浙江杭州310027

出  处:《实用医院临床杂志》2024年第4期19-25,共7页Practical Journal of Clinical Medicine

基  金:国家教育部多脏器衰竭预警与干预重点实验室开放基金(编号:226-2023-00100);湖州市智能药学与个体化治疗重点实验室开放基金(编号:重点项目HZKF-20240101);广西急性呼吸窘迫综合征诊治研究重点实验室开放基金(编号:ZZH2020013)。

摘  要:目的 分析脓毒症相关急性呼吸窘迫综合征近10年的研究热点变迁。方法 从Web of science核心数据库中检索2014年1月至2024年6月发表的主题为脓毒症相关急性呼吸窘迫综合征的研究原著,通过VOSviewer和CiteSpace知识图谱进行可视化分析,重点关注研究热点及演变趋势,同时分析研究主题、研究者及研究机构之间的相关性。查询ClinicalTrial.gov网站,对已注册的相关研究行横断面分析,明确研究目标及可能获得的结果。结果 在过去10年中,脓毒症相关急性呼吸窘迫综合征发文量逐年增加,且具有广泛地域性分布。共1319篇文献被纳入分析,检索Kappa一致性为98%。“acute respiratory distress syndrome”、“sepsis”及“acute lung injury”是最常见的关键词,分别为736次、649次和415次出现,总链接强度分别为5052、4362和3005。“artificial intelligence”及“endophenotype”也呈递增趋势。相关研究主题聚焦于精准化管理、模型构建及潜在亚表型识别等。ClinicalTrial.gov上已注册了39项相关的临床试验,主要研究目的是为临床脓毒症相关的急性呼吸窘迫综合征诊疗提供新思路和依据,提供诊断决策辅助和建立预测模型。结论 脓毒症相关急性呼吸窘迫综合征的研究热点已经逐步转为亚表型及人工智能辅助决策的探索,注册的相关临床试验已经逐步完成,将为此疾病的精准化管理助力。Objective To analyze the changes of research hotspots in sepsis-related acute respiratory distress syndrome(ARDS) in the past decade.Methods Original articles on sepsis-related ARDS published from January 2014 to June 2024 were retrieved from the Web of Science core database. Visual analysis was conducted using knowledge graph of VOSviewer and CiteSpace. Its research hotspots and evolving trends were focused. At the same time, the relationships between researchers, research institutions, and co-citations were analyzed. The ClinicalTrial.gov website was checked. A cross-sectional analysis of registered relevant studies was conducted. The research objectives and possible results were clarified.Results Over the past 10 years, the numbers of publications on sepsis-related ARDS were increased annually and showed a wide geographical distribution. In total, 1,319 articles were included in the bibliometric analysis. The search Kappa consistency is 98%. “Acute respiratory distress syndrome, ” “sepsis, ” and “acute lung injury” were the most common keywords. They appeared 736, 649, and 415 times, respectively. The total link strengths were 5052, 4362, and 3005, respectively. “Artificial intelligence” and “endophenotype” also showed a growing trend. Related research topics focused on precision management, model establishment and validation, and potential subtyping identification. A total of 39 related clinical trials have been registered on ClinicalTrial.gov. These trials mainly aimed to provide new ideas and evidence for the diagnosis and treatment of sepsis-related ARDS. It was also expected to provide diagnostic decision-making assistance and establish the predictive models.Conclusions The research focus on sepsis-related ARDS has gradually shifted to the exploration of subtypes and artificial intelligence-assisted decision-making. The registered relevant clinical trials have been gradually completed. It will provide the support for the precision management of the disease.

关 键 词:聚类分析 脓毒症 急性呼吸窘迫综合征 研究热点 

分 类 号:R563.8[医药卫生—呼吸系统]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象