检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:李宪鹏 王海斌[1] 汪俊[1] 台玉朋[1] 甘维明[3] 张永霖 LI Xianpeng;WANG Haibin;WANG Jun;TAI Yupeng;GAN Weiming;ZHANG Yonglin(State Key Laboratory of Acoustics,Institute of Acoustics,Chinese Academy of Sciences,Beijing 100190,China;University of Chinese Academy of Sciences,Beijing 100049,China;Hainan Acoustics Laboratory,Institute of Acoustics,Chinese Academy of Sciences,Haikou 570105,China)
机构地区:[1]中国科学院声学研究所声场声信息国家重点实验室,北京100190 [2]中国科学院大学,北京100049 [3]中国科学院声学研究所南海研究站,海口570105
出 处:《应用声学》2024年第4期709-718,共10页Journal of Applied Acoustics
基 金:中国科学院特别研究助理资助项目。
摘 要:针对水声信道的稀疏特性,该文基于集员L1范数约束比例调节仿射投影算法,在不增加稳态误差的前提下,首先采用一种鲁棒集员滤波思想,通过设定动态误差门限加速算法收敛速度;另外针对其矩阵计算复杂度高问题,利用历史的比例调节矩阵优化信道更新方程,使得某些过程矩阵可通过递归方法更新,从矩阵运算角度降低了计算复杂度。湖试和海试数据处理结果表明,面对弱时变和强时变信道时,此方法相对已有稀疏水声信道估计方法略微降低稳态误差的同时具有更快的收敛速度,并从矩阵运算和迭代次数两个方面降低了计算复杂度。In view of the sparsity of underwater acoustic channel(UAC),this paper proposes a sparse UAC estimation method with lower complexity based on set membership L1-norm constrained improved proportionate affine projection algorithm(SM-L1-IPAPA).Firstly,we borrow a robust SM(RSM)filtering idea to set a dynamic error threshold,which accelerates the convergence speed without increasing steady-state error.Then the channel update equation is optimized by using the historical proportionate matrix,so that some process matrices can be updated by recursive method,which reduces computational complexity from the perspective of matrix operation.The results of lake trial and sea trial data processing show that this method has faster convergence speed and slight lower steady-state error than other sparse UAC estimation methods when facing both weak and strong time-varying channels,and it can reduce the computational complexity from two aspects of matrix operation and iteration times.
分 类 号:TN929.3[电子电信—通信与信息系统]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.248