检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:高淑芝[1] 于一凡 张义民[1] GAO Shu-zhi;YU Yi-fan;ZHANG Yi-min(Institute of Equipment Reliability,Shenyang Chemical University,Liaoning Shenyang 110142,China;College of Information Engineering,Shenyang Chemical University,Liaoning Shenyang 110142,China)
机构地区:[1]沈阳化工大学装备可靠性研究所,辽宁沈阳110142 [2]沈阳化工大学信息工程学院,辽宁沈阳110142
出 处:《机械设计与制造》2024年第7期368-371,共4页Machinery Design & Manufacture
基 金:NSFC-国家自然科学重点基金—辽宁联合基金(U1708254);辽宁省特聘教授(No[.2018]3533)项目。
摘 要:为解决滚动轴承运行可靠度预测问题,这里提出了基于麻雀搜索算法-相关向量机的滚动轴承可靠度预测方法。首先对轴承振动信号在时域、频域及时频域构成的维数较高的向量集利用主成分分析算法进行降维;然后将降维后的特征集作为轴承的退化状态特征输入到逻辑回归模型中,进行滚动轴承可靠性评估;然后将轴承的性能退化状态特征作为麻雀搜索算法-相关向量机模型的输入,获取预测结果;最终把结果带入到逻辑回归模型中,预测轴承的运行可靠度。实验结果表明提出的算法在预测滚动轴承运行可靠性中具有明显优势。In order to solve the problem of rolling bearing operation reliability prediction,a rolling bearing reliability prediction method based on sparrow search algorithm and relevance vector machine is proposed in this paper.Firstly,principal component analysis(PCA)was used to reduce the dimensionality of the higher dimensional vector set composed of bearing vibration signals in time domain,frequency domain and time-frequency domain.Then,the feature set after dimensionality reduction was input into the logistic regression model as the degenerate state features of the bearing to evaluate the reliability of the rolling bearing.Then,the performance degradation state characteristics of the bearing were taken as the input of the sparrow search algorithm-relevance vector machine model to obtain the prediction results.Finally,the results are put into the logistic regression model to predict the operating reliability of bearings.Experimental results show that the proposed algorithm has obvious advantages in predicting the operational reliability of rolling bearings.
分 类 号:TH16[机械工程—机械制造及自动化]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.20.224.152