检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:刘键 王庆 聂檄晨 朱理想 李佳佳 LIU Jian;WANG Qing;NIE Xichen;ZHU Lixiang;LI Jiajia(Nanjing Surveying and Mapping Research Institute Company Limited,Nanjing,Jiangsu 210019,China;The 28th Research Institute of China Electronics Technology Group Corporation,Nanjing,Jiangsu 210014,China)
机构地区:[1]南京市测绘勘察研究院股份有限公司,江苏南京210019 [2]中国电子科技集团公司第二十八研究所,江苏南京210014
出 处:《北京测绘》2024年第6期857-861,共5页Beijing Surveying and Mapping
基 金:南京市测绘勘察研究院股份有限公司科研项目(2019RD09)。
摘 要:针对传统的贝维斯(Bevis)模型在中国区域存在系统误差及精度不高的问题,本文提出添加站点纬度和海拔参数的T_(m)多因子回归模型。根据中国区域70个探空测站点的观测数据,首先研究了T_(m)与纬度φ、海拔h的相关系数时间变化规律,同时分别研究了T_(m)与纬度φ、海拔h的线性拟合系数k、b的时间变化规律;然后在T_(m)-Ts单因子回归模型基础上,添加纬度与海拔参数,并用年积日(DOY)表达其拟合系数,得到中国区域的T_(m)多因子回归模型;最后利用2018年的探空数据进行了验证。结果表明该模型极大地缩小了系统误差,精度提高了19.8%,在中国区域具有较高的实用性。The traditional Bevis model has system errors and low accuracy in China.Therefore,a T_(m) multi-factor regression model added with the latitude and altitude parameters of stations was proposed.Based on the observation data from 70sounding stations in China,firstly,the variation of the correlation coefficients of Tm,latitude φ,and altitude h with time was investigated,and the variation of the linear fitting coefficients k and b of T_m,latitude φ,and altitude h with time was studied,respectively.Then,based on the T_m-T_(s) single-factor regression model,latitude and altitude parameters were added,and the fitting coefficient was expressed by the day of year(DOY).The T_(m) multi-factor regression model of the Chinese region was obtained.Finally,the verification was conducted using sounding data from 2018.The results indicate that the model greatly weakens the system error and improves the accuracy by 19.8%,indicating its higher practicality in China.
关 键 词:加权平均温度(T_(m)) 线性分析 大气水汽含量(PWV) 温度模型 多因子回归模型
分 类 号:P258[天文地球—测绘科学与技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.49