检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:程子豪 裴玉瑶 周义祥 张文东 王常青 周璇 王艳玲[4] 吴茜[1,2] CHENG Zihao;PEI Yuyao;ZHOU Yixiang;ZHANG Wendong;WANG Changqing;ZHOU Xuan;WANG Yanling;WU Qian(School of Biomedical Engineering,Anhui Medical University,Hefei 230012,China;School of Humanistic Medicine,Anhui Medical University,Hefei 230032,China;School of Health Management,Anhui Medical University,Hefei 230012,China;The Third People's Hospital of Hefei,Hefei 230022,China)
机构地区:[1]安徽医科大学生物医学工程学院,安徽合肥230012 [2]安徽医科大学人文医学院,安徽合肥230032 [3]安徽医科大学卫生管理学院,安徽合肥230012 [4]合肥市第三人民医院,安徽合肥230022
出 处:《贵州大学学报(自然科学版)》2024年第4期64-69,共6页Journal of Guizhou University:Natural Sciences
基 金:国家自然科学基金青年资助项目(62001005);安徽省高校科学研究资助项目(2022AH050660)。
摘 要:瞳孔中心是眼动追踪、人脸识别等计算机视觉领域中的精细参数,实现瞳孔中心自动检测具有广泛的应用价值。论文结合Faster RCNN模型,提出一种细分虹膜形状特征与图像梯度法的人眼瞳孔定位算法。首先,对图像进行光照补偿预处理,在此基础上,利用改进的ResNet50作为Faster RCNN模型的骨干网络来检测人脸和眼睛;其次,通过几何约束对眼睛区域进行选择,采用积分图像法实现虹膜区域检测;最后,通过图像梯度算法进行瞳孔中心定位。实验结果表明:该算法在GI4E数据集及自建的面部数据集上能够较精确地实现瞳孔中心定位,并且在归一化误差0.2阈值内,分别达到了100%和99.46%的定位精度,具有较好的鲁棒性和实时性。Pupil center is a precise parameter in eye tracking,face recognition and other computer vision fields,and the realization of automatic pupil center detection has a wide range of application value.Combined with the Faster RCNN model,this study proposes a pupil localization algorithm for the human eye based on the segmented iris shape features and the image gradient method.First,the image is preprocessed with light compensation,and on this basis,the improved ResNet50 is used as the backbone network of the Faster RCNN model to detect the face and eyes.Then,the eye region is selected by geometric constraints,the iris region is detected by the integral image method,and finally the pupil center is localized by the image gradient algorithm.The experimental results show that the algorithm can achieve pupil center localization accurately on the GI4E dataset and the self-built facial dataset,and achieves 100% and 99.46% localization accuracies within the normalized error threshold of 0.2,respectively,with good robustness and real-time performance.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.239