检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:仲蕾 张会 许静[1] 陆雅维[1] 项晓婷 王若梅 王珩[4] ZHONG Lei;ZHANG Hui;XU Jing;LU Yawei;XIANG Xiaoting;WANG Ruomei;WANG HENG(School of Nursing,Anhui Medical University,Heifei 230601,China;Nursing Department of the First Affiliated Hospital of Anhui Medical University,Heifei 230022,China;Nursing Department of Anhui Provincial Public Health Clinical Center,Heifei 230000,China;The President of the First Affiliated Hospital of Anhui Medical University,Heifei 230022,China)
机构地区:[1]安徽医科大学护理学院,安徽合肥230601 [2]安徽医科大学第一附属医院护理部,安徽合肥230022 [3]安徽省公共卫生临床中心护理部,安徽合肥230000 [4]安徽医科大学第一附属医院院长室,安徽合肥230022
出 处:《现代医学》2024年第6期845-851,共7页Modern Medical Journal
基 金:2024年度安徽医科大学护理学院研究生青苗培育项目(hlqm120240080);2020年国家重点研发计划(2020YFC2006500)。
摘 要:目的:调查中老年2型糖尿病患者肌少症危险因素,并构建列线图模型。方法:采用便利抽样的方法,选取安徽省某三级甲等医院内分泌科2023年5月—2023年12月收治的2型糖尿病患者349例,对其进行问卷调查。采用单因素和多因素Logistic回归分析对2型糖尿病患者肌少症危险因素进行探讨,并构建可视化的风险预测模型。通过受试者工作特征(ROC)曲线下面积对模型预测效能进行了验证。结果:2型糖尿病患者肌少症的发生率为16.9%(59/349)。多因素分析结果显示,病程、每周锻炼次数、BMI、小腿围、匹兹堡睡眠质量指数(PSQI)得分、营养状态评估(MNA-SF)得分是2型糖尿病患者发生肌少症的影响因素。基于以上因素构建肌少症的风险预测模型,ROC曲线下面积为0.982[95%CI(0.968,0.995)];最佳临界值为0.366,灵敏度为0.966,特异度为0.934。H-L拟合优度检验显示,χ^(2)=2.446,P=0.964;Brier评分为0.036。结论:肌少症风险预测模型预测效能较好,可为医护人员进行临床决策提供参考。Objective:To investigate the risk factors of sarcopenia in middle-aged and elderly patients with type 2 diabetes and construct a nomogram model.Methods:In this cross-sectional study,a total of 349 patients with type 2 diabetes admitted from May 2023 to December 2023 in the Department of Endocrinology of a tertiary A-level hospital in Anhui Province were selected and investigated using questionnaires and convenient sampling.Univariate analysis and Logistic regression analysis were performed to explore the risk factors of sarcopenia in type 2 diabetes patients,and a visual risk prediction model was constructed.The prediction efficiency of the model was verified by the region under receiver operating characteristic(ROC)curve.Results:The incidence of sarcopenia in patients with type 2 diabetes was 16.9%(59/349).Multivariate logistic regression analysis showed that diabetes course,the number of exercises per week,BMI,calf girth,Pittsburgh Sleep Quality Index(PSQI)score,and Nutritional Status Assessment(MNA-SF)score were the influencing factors for the development of sarcopenia in patients with type 2 diabetes.According to these variables,a prediction model was constructed,and the area under the ROC curve was 0.982[95%CI(0.968,0.995)].The optimal critical value was 0.366,the sensitivity was 0.966,and the specificity was 0.934.The H-L test showed thatχ^(2)=2.446,P=0.964,and Brier score was 0.036.Conclusion:The risk prediction model of sarcopenia is effective and can provide reference for clinical treatment.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.119.128.37