铅铋堆燃料组件子通道计算方法优化  

Optimization of subchannel analysis for lead-bismuth reactor fuel assemblies

在线阅读下载全文

作  者:王言 卢嘉鸣 姚嘉晔 洪钢 张尧立 WANG Yan;LU Jiaming;YAO Jiaye;HONG Gang;ZHANG Yaoli(College of Energy,Xiamen University,Xiamen 361005,China)

机构地区:[1]厦门大学能源学院,厦门361005

出  处:《核技术》2024年第7期117-124,共8页Nuclear Techniques

基  金:厦门市自然科学基金项目(No.3502Z202373016)资助。

摘  要:针对铅铋堆开展燃料组件子通道分析,对于铅铋堆的发展具有重要的意义。本研究的目的是修改和优化COBRA子通道程序,使其适用于铅铋反应堆,并验证其性能。修改包括调整物性参数、流换热模型、摩擦阻力模型以及湍流交混模型。然后将修改后的程序数值计算结果与实验数据进行比较。针对宽参数质量流量条件,提出了一种与神经网络相结合的子通道优化方法。结果表明:改进后的子通道程序在实验工况下与实验结果和FLUENT计算结果吻合良好。分析质量流量对计算精度的影响,发现神经网络可以提高计算精度。通过改进和神经网络优化子通道分析程序适用于宽参数质量流量工况下的铅铋堆子通道分析,可为铅铋堆的堆芯设计提供方法借鉴。[Background]Subchannel analysis of fuel assemblies is critical for the development of lead-bismuth reactors.[Purpose]This study aims to modify and optimize the COBRA subchannel program to make it suitable for lead-bismuth reactors and validate its performance.[Methods]Modifications were made to the COBRA subchannel program,involving adjusting physical properties,convective heat transfer models,friction models,and turbulence mixing models.The performance of the modified program was evaluated by comparing its numerical calculation results to experimental data.To optimize results over a wide range of mass flow rate conditions,an optimization method based on a subchannel model and coupled with a neural network was proposed,and the influence of mass flow rate on calculation accuracy was analyzed.[Results]The comparison results demonstrate that the modified subchannel program performs well under experimental conditions,with an error of no more than 5%compared with experimental results and no more than 3%compared with FLUENT results.The application of neural networks is found to improve accuracy and reduce errors by an order of magnitude.[Conclusions]The optimized subchannel analysis method,derived from the modifications and neural network coupling,can accurately predict outlet temperatures for lead-bismuth reactors under a wide range of mass flow rate conditions.This method provides valuable guidance for the design of such reactors.

关 键 词:铅铋堆 子通道分析 带绕丝燃料组件 神经网络 计算流体力学 

分 类 号:TL333[核科学技术—核技术及应用]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象