检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:冀永曼 许锋[1] JI Yongman;XU Feng(College of Intelligent Manufacturing,Xinxiang Vocational and Technical College,Xinxiang 453000,Henan China)
机构地区:[1]新乡职业技术学院,智能制造学院,河南新乡453000
出 处:《锻压装备与制造技术》2024年第3期95-98,共4页China Metalforming Equipment & Manufacturing Technology
摘 要:选择液压锻锤作为测试对象,再以多项式拟合和集成算法结合的过程,开发出了锻锤磨损阶段建立回归模型的方法。再把AdaBoost集成算法也加入统一回归模型内,从而降低磨损过程中的回归模型预测误差。研究结果表明:给出了基于AdaBoost集成回归模型的液压锻锤磨损状态识别表达式。平稳磨损阶段所需时间最短,最长的为急剧磨损阶段。该研究为进一步识别锻锤磨损状态提供了一定的理论支撑作用,该研究可以拓宽到其它的磨损领域,具有很好的实际应用价值。The hydraulic hammer is selected as the test object,and the regression model of hammer wear stage is developed by polynomial fitting and integrated algorithm.Then AdaBoost integrated algorithm is added into the unified regression model to reduce the prediction error of the regression model in the wear process.The research results show that the expression of hydraulic forging hammer wear state recognition based on AdaBoost integrated regression model is given.The period of smooth wear is the shortest,and the period of sharp wear is the longest.The research provides some theoretical support for further identifying the wear state of forging hammer.The research can be extended to other wear fields and has good practical application val-ue.
分 类 号:TG316.4[金属学及工艺—金属压力加工]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.7