检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:张思佳 于红 ZHANG Sijia;YU Hong(Liaoning Provincial Key Laboratory of Marine Information Technology,College of Information Engineering,Dalian Ocean University,Dalian 116023,China;Key Laboratory of Environment Controlled Aquaculture(Dalian Ocean University),Ministry of Education,Dalian 116023,China;Dalian Key Laboratory of Smart Fisheries,Dalian 116023,China)
机构地区:[1]大连海洋大学信息工程学院,辽宁省海洋信息技术重点实验室,辽宁大连116023 [2]设施渔业教育部重点实验室(大连海洋大学),辽宁大连116023 [3]大连市智慧渔业重点实验室,辽宁大连116023
出 处:《大连海洋大学学报》2024年第3期369-382,共14页Journal of Dalian Ocean University
基 金:辽宁省重点研发计划项目(2023JH26/10200015);辽宁省教育厅高等学校基本科研项目面上项目(LJKMZ20221095)。
摘 要:大模型是具有大量参数和复杂结构的机器学习基础模型,目前正在逐渐成为科技发展的重要方向之一。本文阐述了大模型应用的核心技术,并探讨了其运行所需的基本条件及大模型在辅助水产养殖病害防治中的具体应用,包括大模型辅助水产养殖病害防治与管理、协同水产养殖环境监测与疾病防治、水产药物研发、水产动物疾病抗性培育组学技术中的应用,并从数据获取与处理、模型适应性与泛化能力、计算资源与训练成本、隐私与安全、模型解释性与用户接受度、多任务学习与优先级管理、跨区域数据共享与合作、知识图谱增强大模型集成与利用等方面提出了大模型的未来发展趋势,以期为大模型在水产养殖病害防治领域的进一步应用提供有力支持,推动水产养殖业向更高效、可持续的方向发展。Large models,characterized by their extensive parameters and complex structures,are foundational to machine learning and are increasingly becoming a significant direction for future technological development.This paper elucidates the core technologies employed in large models and discusses the basic conditions necessary for their operation.It also explores the utilization of large models in assisting with disease prevention and control in aquaculture,including disease prevention and management,collaborative monitoring of aquaculture environments,aquatic drug research and development,and the application of genomics techniques in breeding disease resistance in aquatic species.Future prospects encompass data acquisition,processing,model adaptability,generalization,computational needs,training costs,privacy&security,model interpretability,multi-task learning,priority management,cross-regional data sharing,and knowledge graph-enhanced large model integration.The aim is to provide robust support for further applications of large models in the field of disease prevention and control in aquaculture,thereby promoting the development of the aquaculture industry towards greater efficiency and sustainability.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.7