检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:刘思思[1] 陈忠[1] 徐雪茹 吴亮[2] LIU Sisi;CHEN Zhong;XU Xueru;WU Liang(School of Artificial Intelligence and Automation,Huazhong University of Science and Technology,Wuhan 430074;School of Foreign Languages,Huazhong University of Science and Technology,Wuhan 430074)
机构地区:[1]华中科技大学人工智能与自动化学院,武汉430074 [2]华中科技大学外国语学院,武汉430074
出 处:《计算机与数字工程》2024年第5期1359-1365,1393,共8页Computer & Digital Engineering
基 金:民用航天十三五预先研究项目(编号:D040401-w05);国产卫星应急观测与信息支持关键技术项目(编号:B0302)资助。
摘 要:针对KCF跟踪算法在目标跟踪过程中存在目标尺度变化时检测精度低、目标遮挡时跟踪容易丢失等问题,提出了SMAKCF(Scale-Adaptive Multiple-Feature Anti-Occlusion KCF)跟踪算法,该算法同时优化了KCF算法中的尺度响应、特征选择及模板更新策略,融合HOG特征及CN特征,加入尺度估计滤波器并利用APCE判据改进位置滤波器的更新方式,同时引入了一个检测模块对不可靠跟踪结果进行重检测。在Visual Tracker Benchmark的50个测试视频序列上进行实验来评估算法的性能,实验表明,SMAKCF算法能够有效地解决目标的尺度变化及遮挡问题,提高跟踪算法在长时目标跟踪过程中的性能。The SMAKCF(Scale-Adaptive Multiple-Feature Anti-Occlusion KCF)is proposed to solve the problem that the KCF algorithm can not adapt to the object scale and occlusion when tracking an object.The SMAKCF algorithm optimizes simultane-ously several problems including scale response,feature extraction,and update strategy.To be specific,a fusion feature is put for-ward combing HOG features and CN features efficiently,then a scale estimation filter is added and the APCE criterion is introduced to improve the updating method of the position estimation filter.Besides,an extra detection module is designed for re-detecting the object which is unreliably detected.Experiments are conducted on 50 test video sequences of Benchmark to evaluate the algorithm performance.It is indicated that SMAKCF algorithm can overcome difficulty in the scale change and occlusion of the object,the tracking ability in the long-term object tracking process is enhanced significantly.
分 类 号:TP391[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.216.224.98