Separation identification of a neural fuzzy Wiener–Hammerstein system using hybrid signals  

在线阅读下载全文

作  者:Feng LI Hao YANG Qingfeng CAO 

机构地区:[1]College of Electrical and Information Engineering,Jiangsu University of Technology,Changzhou 213001,China [2]College of Electrical,Energy and Power Engineering,Yangzhou University,Yangzhou 225127,China

出  处:《Frontiers of Information Technology & Electronic Engineering》2024年第6期856-868,共13页信息与电子工程前沿(英文版)

基  金:Project supported by the National Natural Science Foundation of China(No.62003151);the Changzhou Science and Technology Bureau(Nos.CJ20220065 and CM20223015);the Qinglan Project of Jiangsu Province,China(No.2022[29]);the Zhongwu Youth Innovative Talents Support Program of Jiangsu University of Technology,China(No.202102003)。

摘  要:A novel separation identification strategy for the neural fuzzy Wiener–Hammerstein system using hybrid signals is developed in this study.The Wiener–Hammerstein system is described by a model consisting of two linear dynamic elements with a nonlinear static element in between.The static nonlinear element is modeled by a neural fuzzy network(NFN)and the two linear dynamic elements are modeled by an autoregressive exogenous(ARX)model and an autoregressive(AR)model,separately.When the system input is Gaussian signals,the correlation technique is used to decouple the identification of the two linear dynamic elements from the nonlinear element.First,based on the input and output of Gaussian signals,the correlation analysis technique is used to identify the input linear element and output linear element,which addresses the problem that the intermediate variable information cannot be measured in the identified Wiener–Hammerstein system.Then,a zero-pole match method is adopted to separate the parameters of the two linear elements.Furthermore,the recursive least-squares technique is used to identify the nonlinear element based on the input and output of random signals,which avoids the impact of output noise.The feasibility of the presented identification technique is demonstrated by an illustrative simulation example and a practical nonlinear process.Simulation results show that the proposed strategy can obtain higher identification precision than existing identification algorithms.

关 键 词:Wiener-Hammerstein system Neural fuzzy network Correlation analysis technique Hybrid signals Separation identification 

分 类 号:TP273[自动化与计算机技术—检测技术与自动化装置] TP18[自动化与计算机技术—控制科学与工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象