检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:周顶昌 马永奇 尤云祥[1,2,3] 陈伟 冯爱春[1,2,3] Zhou Dingchang;Ma Yongqi;You Yunxiang;Chen Wei;Feng Aichun(State Key Laboratory of Ocean Engineering,Shanghai Jiao Tong University,Shanghai 200240,China;School of Naval Architecture,Ocean&Civil Engineering,Shanghai Jiao Tong University,Shanghai 200240,China;Yazhou Bay Institute of Deepsea Technology,Shanghai Jiao Tong University,Sanya 572000,China;School of Marine Science and Engineering,Hainan University,Haikou 570228,China;State Key Laboratory of Marine Resource Utilization in South China Sea,Hainan University,Haikou 570228,China;Wuhan Second Ship Design and Research Institute,Wuhan 430205,China)
机构地区:[1]上海交通大学海洋工程国家重点实验室,上海200240 [2]上海交通大学船舶海洋与建筑工程学院,上海200240 [3]上海交通大学三亚崖州湾深海科技研究院,三亚572000 [4]海南大学海洋科学与工程学院,海口570228 [5]海南大学南海海洋资源利用国家重点实验室,海口570228 [6]武汉第二船舶设计研究所,武汉430205
出 处:《水动力学研究与进展(A辑)》2024年第2期264-273,共10页Chinese Journal of Hydrodynamics
基 金:三亚崖州湾科技城科技专项资助(SCKJ-JYRC-2023-53);三亚市科技工业信息化局的资助(2022KJCX97)。
摘 要:该文基于动量守恒原理,引入滑移模型,建立了固液两相混合内流激发提升管振动失稳控制模型。利用简谐微分求积(Harmonic differential quadrature,HDQ)方法求解振动控制方程,分析了均布和非均布网格耦合边界端点平移的网格布置策略对HDQ方法求解精度的影响,结果表明:固液两相流体与单相流体激发的管道振动特性有明显差异;在固支-弹性约束边界条件下,一阶临界流速随着固相颗粒输送浓度和粒径的增加而增加,二阶临界流速反而减小,一、二阶临界频率均增大;输送浓度对临界流速和频率的影响明显,但对颗粒粒径的影响程度十分有限。In this paper,a two-phase solid-liquid mixed internal flow induced vibration instability governing model for the lifting pipe is established,based on the conservation of momentum and the introduction of a slip model.The vibration governing equation is solved using the harmonic differential quadrature(HDQ)method,and the influence of the grid arrangement strategy of homogeneous and non-homogeneous grids coupled with boundary end-point translation on the solution accuracy of the HDQ method is analyzed.The results show that the vibration characteristics of pipes induced by solid-liquid two-phase flow are significantly different from those induced by single-phase flow.Under the clamped-free boundary condition,the first-order critical velocity increases with the solid particle conveying concentration and size increasing,while the second-order critical velocity decreases instead.Both the first and second order critical frequencies increase as conveying concentration and size increases.The effect of conveying concentration on the critical velocity and frequency is significant,with particle size having a very limited degree of influence.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.118.122.239