检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:赵小娟 ZHAO Xiaojuan(Luoyang Open University,Luoyang 471000,China)
机构地区:[1]洛阳开放大学,河南洛阳471000
出 处:《无线互联科技》2024年第12期112-114,共3页Wireless Internet Technology
摘 要:文本语义表征是自然语言处理领域的核心任务之一,将文本信息转化为计算机可理解的数值表示能够实现对文本深层含义的挖掘和应用。文章通过对传统文本语义表征方法的梳理,剖析了这些方法的优势与局限,并重点探讨了深度学习在文本语义表征领域的突破性进展和发展趋势,旨在全面综述文本语义表征技术的研究现状与发展趋势,为相关领域的研究提供有益的参考和启示。Text semantic representation is one of the core tasks in the field of natural language processing,which transforms text information into a numerical representation that can be understood by computers,so as to realize the mining and application of the deep meaning of text.This article reviews the traditional methods of text semantic representation,analyzes their advantages and limitations,and focuses on the breakthroughs and development trends of deep learning in the field of text semantic representation.The aim is to provide a comprehensive overview of the research status and development trends of text semantic representation technology,and to provide useful references and insights for research in related fields.
分 类 号:TP391[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.104