基于MGAN环路滤波视频编码技术的监控系统设计  

Design of monitoring system based on MGAN loop filtering video coding technology

在线阅读下载全文

作  者:左磊 芦阳 宋杨 李成志 赵金民 ZUO Lei;LU Yang;SONG Yang;LI Chengzhi;ZHAO Jinmin(National Energy Changyuan Wuhan Qingshan Thermal Power Co.,Ltd.,Wuhan 430082,China;Beijing Bike Technology Co.,Ltd.,Beijing 100095,China)

机构地区:[1]国能长源武汉青山热电有限公司,湖北武汉430082 [2]北京必可测科技股份有限公司,北京100095

出  处:《粘接》2024年第7期147-151,共5页Adhesion

摘  要:为提高变电站环境监测运行效率,提出一种改进的对抗神经网络环路滤波视频编码技术的环境监控系统。首先,根据系统功能性和非功能性需求,将系统分为视频采集层、边缘计算层、云平台层3大模块,并进行了详细设计;然后,基于生成对抗神经网络(GAN),重点设计了边缘计算层视频编码技术,提出一种多层次的GAN(记为MGAN)环路滤波视频编码技术;对系统功能和非功能进行了测试。结果表明,系统可实现实时监控、多路监控、智能保存和视频编码功能,满足安全性、稳定性、可靠性非功能需求,所设计的基于MGAN的环路滤波视频编码技术能有效提高视频编码质量,进一步提高变电站视频及环境监控系统的运行效率,具有一定的实际应用价值。In order to improve the operational efficiency of substation video monitoring,an improved environmental monitoring system based on adversarial neural network loop filtering video coding technology was proposed.First,according to the functional and non functional requirements of the system,the system was divided into three modules:video capture layer,edge computing layer,and cloud platform layer,and detailed design was carried out.Then,based on the Generic Adversary Nets(GAN),the edge computing layer video coding technology was emphatically designed,and a multi⁃level GAN(MGAN)loop filtering video coding technology was proposed.Finally,the functional and non functional tests of the system were conducted.The results showed that the system could achieve real⁃time monitoring,multi⁃channel monitoring,intelligent storage,and video coding functions,meeting the non func‐tional requirements of security,stability,and reliability.The MGAN⁃based loop filter video coding technology de‐signed can effectively improve the quality of video coding,further improving the operational efficiency of substation video and environmental monitoring systems,and has certain practical application value.

关 键 词:变电站视频监控 生成对抗神经网络 视频编码 环路滤波 

分 类 号:TP311[自动化与计算机技术—计算机软件与理论]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象