检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:楼润平 潘依菲 王棣楠 张允馨 LOU Run-ping;PAN Yi-fei;WANG Di-nan;ZHANG Yun-xin(International Business School,Hainan University,Haikou 570228,China)
出 处:《中国感染控制杂志》2024年第7期806-811,共6页Chinese Journal of Infection Control
基 金:海南省自然科学基金高层次人才项目(723RC462)。
摘 要:目的研究三体模型和三体预测法在预测肺结核发病趋势中的应用。方法使用浙江省2011—2021年肺结核月度发病率数据,基于三体模型和三体预测法构建预测模型,并评估该预测模型的预测性能。结果基于三体模型和三体预测法获得的预测模型1和预测模型2的平均相对预测误差分别为7.94%、8.43%,而使用自回归移动平均(ARIMA)模型获得的平均相对预测误差为8.87%,以上平均相对预测误差均处于区间(7.9%~8.9%),显示预测模型表现优秀。结论三体模型是表现优秀的时间序列预测模型,三体预测法是表现优秀的时间序列预测方法,具有较高的应用价值。Objective To study the application of the trinity model and trinity forecasting method in predicting the incidence trend of pulmonary tuberculosis(PTB).Methods By applying the monthly PTB incidence data in Zhejiang Province from 2011 to 2021,a prediction model was constructed based on the trinity model and trinity forecasting method.Predictive performance of the model was evaluated.Results The mean relative prediction errors of model 1 and model 2 based on trinity model and trinity forecasting method were 7.94%and 8.43%,respectively.The mean relative prediction error obtained by adopting autoregressive integrated moving average(ARIMA)model was 8.87%,and the above mean relative prediction error were all in the range of 7.9%-8.9%,which presented an excellent performance of the forecasting model.Conclusion The trinity model is an excellent time series forecasting model,and the trinity forecasting method is an excellent time series forecasting method,with high application value.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.191.138.59