检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:ZHANG Yi XIA Junling
出 处:《Wuhan University Journal of Natural Sciences》2024年第3期273-283,共11页武汉大学学报(自然科学英文版)
基 金:Supported by the National Natural Science Foundation of China (12272248, 11972241)。
摘 要:This paper focuses on Gauss principle of least compulsion for relative motion dynamics and derives differential equations of motion from it. Firstly, starting from the dynamic equation of the relative motion of particles, we give the Gauss principle of relative motion dynamics. By constructing a compulsion function of relative motion, we prove that at any instant, its real motion minimizes the compulsion function under Gaussian variation, compared with the possible motions with the same configuration and velocity but different accelerations. Secondly, the formula of acceleration energy and the formula of compulsion function for relative motion are derived because the carried body is rigid and moving in a plane. Thirdly, the Gauss principle we obtained is expressed as Appell, Lagrange, and Nielsen forms in generalized coordinates. Utilizing Gauss principle, the dynamical equations of relative motion are established. Finally, two relative motion examples also verify the results' correctness.
关 键 词:relative motion dynamics Gauss principle of least compulsion acceleration energy compulsion function
分 类 号:O316[理学—一般力学与力学基础]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.49