检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:王心语 衷璐洁[1] WANG Xin-yu;ZHONG Lu-jie(Information Engineering College,Capital Normal University,Beijing 100048,China)
出 处:《计算机工程与设计》2024年第7期1957-1963,共7页Computer Engineering and Design
基 金:国家自然科学基金项目(61872253)。
摘 要:为提升往返时延预测的准确性与实时性,在深入挖掘和分析影响其准确度各种因素的基础上,针对往返时延变化的短期随机性与长期平稳性,提出一种基于时序特征建模的往返时延预测方法GCA-RTT。通过构建门控卷积与自注意力机制相融合的时延历史数据局部特征与长期依赖关系学习模型,实现更为精确、高效的往返时延预测。实验结果表明,GCA-RTT可以有效捕捉基于时间序列的往返时延变化特征,与其它神经网络预测方法比较,预测准确性明显提高且预测时间缩短。To improve the accuracy and real-time performance of round-rip time prediction,on the basis of in-depth mining and analysis of various factors affecting its accuracy,the round-trip time prediction method based on time series feature modeling GCA-RTT was proposed for the short-term randomness and long-term stability of round-trip time variation.A more accurate and efficient round-trip time prediction was achieved by constructing a local feature and long-term dependence learning model of historical time delay data integrated with gated convolution and self-attention mechanism.Experimental results show that GCA-RTT can effectively capture the round-trip time variation feature based on time series,and the prediction accuracy is significantly improved and the prediction time is shortened compared with that of other neural network prediction methods.
关 键 词:往返时延预测 时间序列 门控卷积 自注意力机制 局部特征 长期依赖 准确性
分 类 号:TP393[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.145.36.157