融合历史答案特征的多粒度语义交互答案排序方法  

Multi-granularity semantic interactive answers ranking method based on historical answers

在线阅读下载全文

作  者:崔伟琪 严馨[1,2] 刘艳超 邓忠莹 徐广义 CUI Wei-qi;YAN Xin;LIU Yan-chao;DENG Zhong-ying;XU Guang-yi(School of Information Engineering and Automation,Kunming University of Science and Technology,Kunming 650504,China;Yunnan Key Laboratory of Artificial Intelligence,Kunming University of Science and Technology,Kunming 650504,China;Information Technology Center,Hubei Engineering University,Xiaogan 432000,China;Kunming Nantian Computer System Limited Company,Yunnan Nantian Electronics Information Co.,Ltd,Kunming 650040,China)

机构地区:[1]昆明理工大学信息工程与自动化学院,云南昆明650504 [2]昆明理工大学云南省人工智能重点实验室,云南昆明650504 [3]湖北工程学院信息技术中心,湖北孝感432000 [4]云南南天电子信息产业股份有限公司昆明南天电脑信息系统有限公司,云南昆明650040

出  处:《计算机工程与设计》2024年第7期1989-1996,共8页Computer Engineering and Design

基  金:国家自然科学基金项目(61562049、61462055)。

摘  要:为解决只根据单一特征判断答案质量的问题,提出一种结合历史答案特征及多粒度语义交互判断答案质量的排序方法。通过指针网络提取历史答案特征,用动态注意力剔除掉问答对及历史答案的弱相关部分,采用比较聚合池化提取局部语义特征向量,用池化归纳问答对及历史答案句子信息,通过加权求和提取全局语义特征向量。将问答对及历史答案的局部和全局语义特征向量融合,输入到分类器进行打分,按照得分对候选答案排名。实验结果表明,所提方法有效提升了答案选择的正确率。To solve the problem that the answer quality is judged only by a single feature,a ranking method combining historical answer features and multi granularity semantic interaction was proposed to judge the answer quality.The pointer network was used to extract the features of historical answers,and the dynamic attention was used to remove the weak correlation parts of question answer pairs and historical answers.The comparison aggregation pooling was used to extract local semantic feature vectors,and the pooling was used to summarize the sentence information of question answer pairs and historical answers.The weighted sum was used to extract global semantic feature vectors.The local and global semantic feature vectors of question answer pairs and historical answers were fused and inputted to the classifier for scoring,and the candidate answers were ranked according to the score.Experimental results show that the proposed method can effectively improve the accuracy of answer selection.

关 键 词:答案排序 多粒度语义交互 注意力机制 指针神经网络 预训练模型 长短期记忆网络 深度学习 

分 类 号:TP391.1[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象