检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:周伟[1] 孙瑜 李西兴 王林琳[1] ZHOU Wei;SUN Yu;LI Xi-xing;WANG Lin-lin(Hubei Key Laboratory of Modern Manufacturing and Quality Engineering,School of Mechanical Engineering,Hubei University of Technology,Wuhan 430068,China)
机构地区:[1]湖北工业大学机械工程学院现代制造质量工程湖北省重点实验室,湖北武汉430068
出 处:《计算机工程与设计》2024年第7期2041-2049,共9页Computer Engineering and Design
基 金:国家自然科学基金项目(51805152);湖北工业大学绿色工业引领计划基金项目(XJ2021005001);湖北工业大学博士科研启动基金项目(BSQD2019010)。
摘 要:针对考虑生产成本的柔性作业车间调度问题(flow job shop scheduling problem, FJSP),以完工时间与加工成本为优化指标,提出一种求解FJSP的混合遗传变邻域搜索算法。根据个体适应度对种群分割,结合自适应交叉概率改进子代种群产生方式;设计两种邻域结构增强算法的局部搜索能力;提出一种基于动态交叉变异概率的优化算法流程提高求解效率。运用提出的算法求解基准实例与实际问题测试,验证了算法的有效性。Aiming at the flow job shop scheduling problem(FJSP)considering production cost and taking completion time and processing cost as optimization indexes,a hybrid genetic variable neighborhood search algorithm was proposed to solve FJSP.The population was segmented according to individual fitness and the generation method of progeny population was improved by combining adaptive crossover probability.The local search capabilities of two neighborhood structure enhancement algorithms were designed.An optimization algorithm flow based on dynamic cross mutation probability was proposed to improve the solving efficiency.The effectiveness of the proposed algorithm was verified by solving benchmark examples and practical problems.
关 键 词:柔性作业车间调度 加工成本 遗传算法 变邻域搜索 混合算法 动态概率 优化
分 类 号:TP301[自动化与计算机技术—计算机系统结构]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222