检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:吴宇 方红萍[1,2] 伍世虔 WU Yu;FANG Hong-ping;WU Shi-qian(School of Information Science and Engineering,Wuhan University of Science and Technology,Wuhan 430081,China;Institute of Robotics and Intelligent Systems,Wuhan University of Science and Technology,Wuhan 430081,China)
机构地区:[1]武汉科技大学信息科学与工程学院,湖北武汉430081 [2]武汉科技大学机器人与智能系统研究院,湖北武汉430081
出 处:《计算机工程与设计》2024年第7期2104-2110,共7页Computer Engineering and Design
基 金:湖北省自然科学基金青年基金项目(2022CFB676)。
摘 要:针对两幅大曝光率比图像高动态融合时颜色和明暗对比度失真的问题,提出一种IMFs和改进GAN的高动态融合算法。利用强度映射函数(IMFs)插值一张中间虚拟曝光图像;引入曝光感知补偿模块EACB提取可靠区域特征,设计改进GAN建模图像残差,定义渐进学习策略保证GAN稳定收敛,实现中间虚拟曝光图像增强;基于3张图像实现多尺度曝光融合。实验结果表明,针对曝光间隔4EV的高低曝光图像集,算法能有效抑制颜色和明暗度对比失真,保留纹理细节,客观指标MEF-SSIM优于经典MEF算法。According to color and shading contrast distortion in the high dynamic fusion for two large exposure ratio images,a high dynamic fusion algorithm combining IMFs and improved GAN was proposed.An initial intermediate virtual exposure image was obtained by intensity mapping functions(IMFs).An improved GAN driven by IMFs,which accelerated the convergence and enhanced the details of the intermediate virtual exposure image,was designed to model the residual image.EACB module was introduced to guide the network to extract features from the well-exposed reliable area.A proposed generation network progressive learning strategy ensured fast and effective convergence of the GAN to obtain high-quality intermediate virtual exposure images.A classical exposure fusion algorithm was used to achieve high dynamic fusion based on above three images.Experimental results on high and low exposure image dataset with 4EV exposure interval show that the relative brightness and more details are preserved much better in the fusion result images.The MEF-SSIM of the proposed algorithm surpasses that of existing classical MEF algorithms.
关 键 词:两个大曝光比图像 高动态融合 曝光插值 强度映射函数 改进生成对抗网络 曝光感知补偿块 多尺度曝光融合
分 类 号:TP183[自动化与计算机技术—控制理论与控制工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.49