检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:吴小东[1,2,3,4] 王荣海 林国新[2,3,4] WU Xiaodong;WANG Ronghai;LIN Guoxin(School of Mathematics and Computer Science,Quanzhou Normal University,Fujian Quanzhou 362000,China;Fujian Provincial Key Laboratory of Data Intensive Computing,Fujian Quanzhou 362000,China;Key Laboratory of Intelligent Computing and Information Processing(Fuzhou Province University),Fujian Quanzhou 362000,China;Fujian Provincial Big Data Research Institute of Intelligent Manufacturing,Fujian Quanzhou 362000,China)
机构地区:[1]泉州师范学院数学与计算机科学学院,福建泉州362000 [2]福建省大数据管理新技术与知识工程重点实验室,福建泉州362000 [3]智能计算与信息处理福建省高等学校重点实验室,福建泉州362000 [4]数字福建智能制造大数据研究所,福建泉州362000
出 处:《重庆工商大学学报(自然科学版)》2024年第4期97-103,共7页Journal of Chongqing Technology and Business University:Natural Science Edition
基 金:福建省自然科学基金项目(2020J01784);福建省教育厅中青年教师教育科研项目(JAT220280)。
摘 要:近年来,随着人们对云计算业务需求持续增长,数据中心能耗日益增加,由此不仅增加了运营成本,巨大的碳排放对生态环境也产生严重的影响,数据中心节能已成为当前亟须解决的重要难题。对云数据中心的虚拟机放置(Virtual Machine Placement,VMP)进行优化能有效地提高资源利用率,同时,VMP也是减少数据中心能耗的重要技术之一;针对数据中心的能耗感知VMP问题,提出一种基于分组遗传算法的节能算法EEGGA(Energy-Efficient Grouping Genetic Algorithm),算法将节能VMP问题视为装箱问题(Bin Packing Problem,BPP),并应用基于分组编码的遗传算法对其进行求解,通过减少活动物理主机的数量(装箱数量)以实现降低数据中心能耗的目标;在算法迭代过程的交叉和变异等阶段,设计了多种启发优化策略提升子代染色体的适应度,从而提高算法的节能性能和加快迭代收敛的速度;通过仿真实验,在收敛速度和求解性能等方面将提出的算法与传统的节能遗传算法进行对比,实验结果表明:提出的算法能够有效地减少数据中心的能耗,在节能性能和求解收敛速度方面均优于其他算法。In recent years,with the continuous growth of the demand for cloud computing,the energy consumption of cloud data centers has been increasing,which not only brings economic problems,but also has a serious impact on the ecological environment caused by huge carbon emissions.Therefore,data center energy saving has become an important problem to be solved urgently.In cloud data centers,Virtual Machine Placement(VMP)optimization can effectively improve resource utilization.VMP is also one of the important technologies to reduce the energy consumption of data centers.Aiming at the problem of energy-aware VMP of cloud data centers,an Energy-efficient Grouping Genetic Algorithm(EEGGA)based on grouping genetic algorithm(GA)was proposed.The algorithm considered the energy-efficient VMP problem as a bin packing problem(BPP)and applied a genetic algorithm based on grouping coding to solve it.The goal of reducing the overall energy consumption of data centers was achieved by reducing the number of active physical hosts(the number of containers).At the same time,several heuristic optimization strategies were designed to improve the fitness of offspring chromosomes in the crossover and mutation stages of the iteration process,so as to improve the energy-saving performance of the algorithm and accelerate the speed of convergence.In the simulation experiments,the proposed algorithm was compared with traditional algorithms in the aspects of convergence speed and energy-saving performance.Experimental results show that the proposed algorithm can effectively reduce energy consumption and is superior to other algorithms in terms of energy-saving performance and convergence speed.
关 键 词:虚拟机放置 节能 分组遗传算法 装箱问题 数据中心
分 类 号:TP312[自动化与计算机技术—计算机软件与理论]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.145