基于改进XGBoost算法的XLPE电缆接头故障自动化诊断与测量研究  

Research on Automated Diagnosis and Measurement of XLPE Cable Joint Faults Based on Improved XGBoost Algorithm

在线阅读下载全文

作  者:周强 顾汉富 柏嵩 张翔 ZHOU Qiang;GU Hanfu;BAI Song;ZHANG Xiang(State Power Investment Corporation Jiangsu New Energy Co.,Ltd.,Yancheng 224000,China)

机构地区:[1]国家电投集团江苏新能源有限公司,盐城224000

出  处:《自动化与仪表》2024年第7期84-86,95,共4页Automation & Instrumentation

基  金:国家电力投资集团有限公司科技项目(KY-C-2021-GX01)。

摘  要:该文研究基于改进XGBoost算法的XLPE电缆接头故障自动化诊断方法。以35 kV XLPE电缆接头为例,设计局放模拟实验,测量4种绝缘故障局放信号,生成二维局放图谱。从中提取描述投影形状和正负半周轮廓差异的故障特征,构建一维向量输入XGBoost模型,实现故障自动化诊断。应用哈里斯鹰算法优化模型参数,提高诊断分类性能。实验结果表明,该方法能有效测量不同故障类型的局放图谱,并以其特征实现高精度的XLPE电缆接头故障自动化诊断,确保了电缆长期稳定运行,更好地保障了电力安全。Research on an automated fault diagnosis method for XLPE cable joints based on an improved XGBoost algorithm.Taking the 35 kV XLPE cable joint as an example,design a partial discharge simulation experiment to measure four types of insulation fault partial discharge signals and generate a two-dimensional partial discharge map.Extract fault features that describe the differences in projection shape and positive and negative half circumference contours from them,construct one-dimensional vector input XGBoost model,and achieve automated fault diagnosis.Applying the Harris hawks optimization to optimize model parameters and improve diagnostic classification performance.The experimental results show that this method can effectively measure partial discharge spectra of different types of faults and achieve high-precision automatic diagnosis of XLPE cable joint faults based on their characteristics,ensuring long-term stable operation of cables and better ensuring power safety.

关 键 词:改进XGBoost算法 XLPE电缆接头 故障自动化诊断 绝缘故障 哈里斯鹰算法 

分 类 号:TP274[自动化与计算机技术—检测技术与自动化装置]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象