检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:宋雨昕 叶倩 赵盟生 张隆垚 魏永越 SONG Yuxin;YE Qian;ZHAO Mengsheng;ZHANG Longyao;WEI Yongyue(Center for Public Health and Epidemic Preparedness&Response,Peking University,Beijing 100191,China;Department of Biostatistics,School of Public Health,Nanjing Medical University,Nanjing 211166,China;Department of Epidemiology and Biostatistics,School of Public Health,Peking University,Beijing 100191,China;Key Laboratory of Epidemiology of Major Diseases(Peking University),Ministry of Education,Beijing 100191,China)
机构地区:[1]北京大学公众健康与重大疫情防控战略研究中心,北京100191 [2]南京医科大学公共卫生学院生物统计学系,南京211166 [3]北京大学公共卫生学院流行病与卫生统计学系,北京100191 [4]重大疾病流行病学教育部重点实验室(北京大学),北京100191
出 处:《科技导报》2024年第12期75-91,共17页Science & Technology Review
基 金:国家自然科学基金面上项目(81973142)。
摘 要:动态疾病风险预测模型将是精确预防策略的核心,在过去20年中,以精准预防为目的的疾病风险预测模型研究呈现快速增长的态势。目前广泛应用的模型未能充分考虑预测因子随时间变化对疾病风险的影响(静态模型),校准漂移不可避免。综述了动态风险预测模型建模方法,得出如下认识:随着医疗健康大数据的互联互通和共享共用的不断推进,统计学和人工智能新方法的不断涌现,如何挖掘出更丰富的预测因子、识别出更准确的作用模式、开发更符合生物医学背景和实际场景的具有可解释性的疾病风险预测模型,赋能共病共防、异病同防,最终实现个体化多疾病谱的精准预防,将是未来的预测模型方法学研究的重点方向。Dynamic disease risk prediction models are essential for precision prevention strategies.Over the last twenty years,there has been a surge in research focused on these models for precision prevention.However,widely used models(static models)often overlook the impact of changes in predictors over time on disease risk,leading to inevitable calibration drift.This paper reviewed modeling methods for dynamic risk prediction models and provided reference for their development.The conclusions are as follows:As healthcare big data becomes more interconnected and shared,and new methods of statistics and artificial intelligence emerge,the challenge lies in discovering richer predictors,in identifying more accurate modes of action,and in creating interpretable disease risk prediction models which align with biomedical contexts and practical scenarios,to enhance common prevention of common diseases and co-prevention of heterogeneous diseases and to achieve precision and personalized prevention across a spectrum of diseases.This will be a crucial focus for future research on predictive modeling methodologies.
分 类 号:R19[医药卫生—卫生事业管理]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.49