机构地区:[1]郑州大学第二附属医院医学影像科,河南郑州450014
出 处:《河南医学研究》2024年第13期2447-2451,共5页Henan Medical Research
摘 要:目的探究基于扩散加权成像联合多期动态增强提取纹理参数构建无侵袭性模型评估直肠癌分期的可行性。方法回顾性选取郑州大学第二附属医院2016年7月至2021年6月就诊的直肠癌患者为研究对象。所有患者的分期严格按照AJCC第8版进行分期,并分为早期组(Ⅰ~Ⅱ)和晚期组(Ⅲ~Ⅳ)。收集患者的年龄、性别、癌胚抗原(CEA)、糖类抗原199(CA199)等信息,所有患者均在获取病理资料前进行多期动态增强磁共振扫描以及磁共振弥散加权扫描,并计算血管渗透性参数(K_(trans)、K_(ep)、V_(e)、V_(p))以及表观弥散系数(ADC),基于动态增强磁共振影像提取影像组学参数、ADC、血管渗透性参数以及临床信息构建联合模型进行直肠癌的分期预测。结果本研究共纳入115例患者,训练组81例,测试组34例,以训练组患者的影像组学特征信息进行特征降纬,取惩罚系数log=0.0617时对应的特征个数进行影像组学模型构建,训练组Ⅰ~Ⅱ患者影像组学模型平均值为-0.4(-0.7~0),Ⅲ~Ⅳ组患者的影像组学模型的平均值为0.6(0.1~1.3);测试组Ⅰ~Ⅱ患者影像组学模型平均值为-0.1(-0.5~0.2),Ⅲ~Ⅳ组患者的影像组学模型的平均值为1.2(0.5~1.4);训练组和测试组中,Ⅰ~Ⅱ患者的影像组学模型低于Ⅲ~Ⅳ组患者,差异有统计学意义。分别针对Ⅰ~Ⅱ与Ⅲ~Ⅳ的非影像组学参数进行单因素逻辑回归分析后,V_(e)的OR值为0,ADC的OR值为0.04,联合两者进行临床模型构建。训练组中联合模型AUC为0.921,测试组中AUC为0.811。结论联合临床信息、ADC、血管渗透性参数与影像组学参数构建的联合模型可以协助临床上无侵袭性预测直肠癌患者分期信息。Objective To explore the feasibility of constructing a non-invasive model for staging rectal cancer by combining texture parameters extracted from diffusion-weighted imaging and multiphase dynamic contrast-enhanced imaging.Methods Retrospectively selected patients with rectal cancer who visited the Second Affiliated Hospital of Zhengzhou University from July 2016 to June 2021 as research subjects.All patients were staged strictly according to the 8th edition of the AJCC and were divided into an early group(Ⅰ-Ⅱ)and a late group(Ⅲ-Ⅳ).Information such as age,gender,carcinoembryonic antigen(CEA),and carbohydrate antigen 199(CA199)was collected.All patients underwent multiphase dynamic contrast-enhanced magnetic resonance(DCE-MRI)scanning and diffusion-weighted imaging before obtaining pathological materials,and vascular permeability parameters(K_(trans),K_(ep),V_(e),V_(p))as well as apparent diffusion coefficient(ADC)were calculated.Based on the DCE-MRI imaging,radiomics parameters were extracted,and a combined model was constructed using ADC,vascular permeability parameters,and clinical information for the staging prediction of rectal cancer.Results A total of 115 patients were included in this study,with 81 in the training group and 34 in the test group.Feature dimensionality reduction was performed using the radiomics feature information of patients in the training group,and the number of features corresponding to the penalty coefficient log λ=0.0617 was used to construct the Radscore.The average Radscore value for patients in the training group stages Ⅰ-Ⅱ was-0.4(-0.7-0),and for stages Ⅲ-Ⅳ it was 0.6(0.1-1.3).For the test group,the average Radscore for stages Ⅰ-Ⅱ was-0.1(-0.5-0.2),and for stages Ⅲ-Ⅳ it was 1.2(0.5-1.4).In both the training and test groups,the Radscore of stages Ⅰ-Ⅱ was lower than that of stages Ⅲ-Ⅳ,with a statistically significant difference.After performing univariate logistic regression analysis on non-radiomics parameters for stages Ⅰ-Ⅱ and Ⅲ-Ⅳ,the OR f
分 类 号:R445[医药卫生—影像医学与核医学]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...