检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:汪书苹 杨献坤 李昌豪 曾子琪 程宜风 谢佳 WANG Shuping;YANG Xiankun;LI Changhao;ZENG Ziqi;CHENG Yifeng;XIE Jia(State Grid Anhui Electric Power Research Institute,Anhui Province Key Laboratory of Electric Fire and Safety Protection(State Grid Laboratory of Fire Protection for Transmission and Distribution Facilities),Hefei 230601,Anhui,China;State Key Laboratory of Advanced Electromagnetic Technology,School of Electrical and Electronic Engineering,Huazhong University of Science and Technology,Wuhan 430000,Hubei,China;School of Materials Science and Engineering,Huazhong University of Science and Technology,Wuhan 430000,Hubei,China)
机构地区:[1]国网安徽省电力有限公司电力科学研究院,电力火灾与安全防护安徽省重点实验室(国家电网公司输变电设施火灾防护实验室),安徽合肥230601 [2]华中科技大学电气与电子工程学院,强电磁技术全国重点实验室,湖北武汉430000 [3]华中科技大学材料科学与工程学院,湖北武汉430000
出 处:《储能科学与技术》2024年第7期2161-2170,共10页Energy Storage Science and Technology
基 金:国网安徽省电力有限公司科技项目(B31205230027)。
摘 要:锂离子电池(lithium-ion batteries,LIBs)在电动汽车和电化学储能等领域有着广泛的应用。然而,商用碳酸酯电解液的低闪点和易燃烧给LIBs的应用拓展带来了安全隐患。通过引入低成本、不可燃的乙基膦酸二乙酯(diethyl ethylphosphonate,DEEP)阻燃剂,可以有效降低电解液燃烧的风险。然而,DEEP与Li+之间的相互作用强,容易导致DEEP进入Li+的第一溶剂化壳层,参与形成负极表面固态电解质界面(solid electrolyte interphase,SEI)。但是,DEEP还原分解形成的SEI电子屏蔽能力差,难以阻止溶剂分子在界面持续分解,导致石墨负极失效。本研究通过强配位溶剂碳酸乙烯酯和弱配位溶剂线性碳酸酯协同调节DEEP与Li^(+)的作用强度,降低了DEEP在Li^(+)的第一溶剂化壳层中的占比,抑制了DEEP在负极上的分解。在构筑的常规浓度(约1.15 mol/L)DEEP改性的碳酸酯电解液中,石墨负极稳定循环150圈后的容量保持率高达95.6%。此外,该电解液在-60℃下仍能保持良好的流动性,并且石墨/磷酸铁锂电池在-20℃下循环50圈后仍有49.3%的容量保持率。Lithium-ion batteries are extensively used in various applications such as electric vehicles and electrochemical energy storage systems.However,safety concerns related to flammability and low flash point of commercial carbonate electrolytes limit their broad application.The incorporation of nonflammable flame-retardant diethyl ethylphosphonate(DEEP)into carbonate electrolytes has been shown to effectively reduce the risk of battery fires and explosions by mitigating electrolyte combustion.Nonetheless,the strong interaction between DEEP and Li+leads to the infiltration of DEEP into the first solvated shell layer of Li+,contributing to the formation of solid electrolyte interphase(SEI)on the graphite anode.The SEI formed through the reductive decomposition of DEEP provides inadequate electron shielding,failing to halt the ongoing decomposition at the interface and leading to the failure of graphite anodes in DEEP-modified carbonate electrolytes.To address this issue,this study adopts a synergistic strategy,using ethylene carbonate as a strong ligand solvent and linear carbonate as a weak ligand solvent.This approach aims to diminish the interaction strength between DEEP and Li^(+),decrease the proportion of DEEP in the first solvated shell layer of Li^(+),and reduce the decomposition of DEEP on the anode.In the developed DEEP-modified carbonate electrolyte with a conventional concentration(~1.15 mol/L),the graphite anode shows an impressive capacity retention of 95.6%after 150 cycles.In addition,the electrolyte remains fluid at-60℃,and the graphite/LiFePO_(4) battery retains 49.3%of its capacity after 50 cycles at-20℃.
关 键 词:锂离子电池 磷酸酯 石墨电极 不可燃电解液 低温性能
分 类 号:TM911[电气工程—电力电子与电力传动]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.49