Optimizing magnetoelastic properties by machine learning and high-throughput micromagnetic simulation  被引量:1

在线阅读下载全文

作  者:Jian-Hu Gong Zheng-Ming Zhang Cheng-Liang Zhang Peng-Qiang Hu Chao Zhou Dun-Hui Wang Sen Yang 

机构地区:[1]Division of Microelectronic Materials and Devices,Hangzhou Dianzi University,Hangzhou 310018,China [2]School of Physics,MOEKey Laboratory forNonequilibrium Synthesis and Modulation of Condensed Matter and State Key Laboratory for Mechanical Behavior of Materials,Xi'an Jiaotong University,Xi'an 710049,China [3]National Laboratory of Solid State Microstructures,Nanjing University,Nanjing210093,China

出  处:《Rare Metals》2024年第5期2251-2262,共12页稀有金属(英文版)

基  金:financially supported by the National Key R&D Program of China(No.2021YFB3501401);the National Natural Science Foundation of China(Nos.52001103,U22A20117);Zhejiang Provincial Natural Science Foundation of China(No.LQ21E010001)。

摘  要:Magnetoelastic couplings in giant magnetostrictive materials(GMMs)attract significant interests due to their extensive applications in the fields of spintronics and energy harvesting devices.Understanding the role of the selection of materials and the response to external fields is essential for attaining desired functionality of a GMM.Herein,machine learning(ML)models are conducted to predict saturation magnetostrictions(λ_(s))in RFe_(2)-type(R=rare earth)GMMs with different compositions.According to ML-predicted composition–λsrelations,it is discovered that the values ofλshigher than1100×10^(-6)are almost situated in the composition space surrounded by 0.26≤x≤0.60 and 1.90≤y≤2.00 for the ternary compounds of Tb_(x)Dy_(1-x)Fe_(y).Assisted by ML predictions,the compositions are further narrowed down to the space surrounded by 0.26≤x≤0.32 and 1.92≤y≤1.97 for the excellent piezomagnetic(PM)performance in the Tb_(x)Dy_(1-x)Fe_(y)based PM device through our developed high-throughput(HTP)micromagnetic simulation(MMS)algorithm.Accordingly,high sensitivities up to10.22-13.61 m T·MPa^(-1)are observed in the optimized range within which the available experimental data fall well.This work not only provides valuable insights toward understanding the mechanism of magnetoelastic couplings,but also paves the way for designing and optimizing highperformance magnetostrictive materials and PM sensing devices.

关 键 词:MAGNETOSTRICTION Piezomagnetic effect Machine learning Micromagnetic simulation 

分 类 号:TP181[自动化与计算机技术—控制理论与控制工程] TG139[自动化与计算机技术—控制科学与工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象