Unstructured Road Extraction in UAV Images based on Lightweight Model  

在线阅读下载全文

作  者:Di Zhang Qichao An Xiaoxue Feng Ronghua Liu Jun Han Feng Pan 

机构地区:[1]School of Automation,Beijing Institute of Technology,Beijing 100081,China [2]Tianjin Institute of Maritime Navigation Instruments,Tianjin 300130,China [3]The 716th Research Institute of China Shipbuilding Group Co.,Ltd,Jiangsu 222061,China

出  处:《Chinese Journal of Mechanical Engineering》2024年第2期372-384,共13页中国机械工程学报(英文版)

基  金:Supported by National Natural Science Foundation of China(Grant Nos.62261160575,61991414,61973036);Technical Field Foundation of the National Defense Science and Technology 173 Program of China(Grant Nos.20220601053,20220601030)。

摘  要:There is no unified planning standard for unstructured roads,and the morphological structures of these roads are complex and varied.It is important to maintain a balance between accuracy and speed for unstructured road extraction models.Unstructured road extraction algorithms based on deep learning have problems such as high model complexity,high computational cost,and the inability to adapt to current edge computing devices.Therefore,it is best to use lightweight network models.Considering the need for lightweight models and the characteristics of unstructured roads with different pattern shapes,such as blocks and strips,a TMB(Triple Multi-Block)feature extraction module is proposed,and the overall structure of the TMBNet network is described.The TMB module was compared with SS-nbt,Non-bottleneck-1D,and other modules via experiments.The feasibility and effectiveness of the TMB module design were proven through experiments and visualizations.The comparison experiment,using multiple convolution kernel categories,proved that the TMB module can improve the segmentation accuracy of the network.The comparison with different semantic segmentation networks demonstrates that the TMBNet network has advantages in terms of unstructured road extraction.

关 键 词:Unstructured road Lightweight model Triple Multi-Block(TMB) Semantic segmentation net 

分 类 号:V423[航空宇航科学与技术—飞行器设计] TH112[机械工程—机械设计及理论]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象