检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:闫向彤[1] 张健 乔煜哲 董鹏辉 熊友锟 YAN Xiangtong;ZHANG Jian;QIAO Yuzhe;DONG Penghui;XIONG Youkun(School of Mechanical Engineering,Xi’an University of Science and Technology,Xi’an 710054,China;School of Architecture and Civil Engineering,Xi’an University of Science and Technology,Xi’an 710054,China)
机构地区:[1]西安科技大学机械工程学院,陕西西安710054 [2]西安科技大学建筑与土木工程学院,陕西西安710054
出 处:《传感器与微系统》2024年第7期165-168,共4页Transducer and Microsystem Technologies
基 金:国家自然科学基金资助项目(51834006)。
摘 要:针对传统反向传播(BP)神经网络在预测时随机产生的初始权值、阈值影响准确性的问题,提出一种改进的海鸥优化算法(ISOA)对BP神经网络的初始阈值、权值进行寻优。首先,为提高海鸥优化算法(SOA)的收敛精度和跳出局部最优的能力,使用Sine混沌映射初始化种群,引入非线性参数A,在海鸥攻击时引入乘除策略进行扰动,同时在攻击阶段后引入反向学习策略。然后,使用ISOA优化BP神经网络初始权值、阈值,解决对初值敏感和易陷入局部最优的问题。最后,在冻结裂隙砂岩动态冲击试验中进行峰值应力预测,结果表明:对比原始BP、粒子群优化(PSO)-BP和SOA-BP,ISOA优化后的BP神经网络对峰值应力预测精度更高。Aiming at the problem that the initial weights and threshold randomly generated by traditional back propagation(BP)neural network affect the accuracy of prediction,an improved seagull optimization algorithm(ISOA)is proposed for optimizing of initial thresholds and weights of the BP neural netwoek.Firstly,to improve the convergence precision of seagull optimization algorithm(SOA)and the ability to jump out of local optimum,the population is initialized using Sine chaotic mapping,the nonlinear parameter A is introduced,the multiplication and division strategy is introduced to disturb the seagull attack,and the reverse learning strategy is introduced after the attack phase.Then,the ISOA is used to optimize the initial weights and thresholds of the BP neural netwoek to solve the problem of sensitivity to the initial values and easy to fall into the local optimum.Finally,peak stress prediction is carried out in the dynamic impact test of frozen fractured sandstone.The results show that compared with original BP,PSO-BP and SOA-BP,the BP NN optimized by ISOA has higher precision in peak stress prediction.
关 键 词:反向传播神经网络 海鸥优化算法 混沌映射 乘除策略 反向个体
分 类 号:TP301[自动化与计算机技术—计算机系统结构]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.31