考虑维修人员约束的港口起重机轴承群体视情维修  

Condition-based Maintenance of Port Crane Bearing Considering the Constraints of Maintenance Workforce

在线阅读下载全文

作  者:兰允川 廖小强 邱思琦 LAN Yunchuan;LIAO Xiaoqiang;QIU Siqi(School of Mechanical Engineering,Shanghai Jiao Tong University,Shanghai 200240,China;Paris Elite Institute of Technology,Shanghai Jiao Tong University,Shanghai 200240,China)

机构地区:[1]上海交通大学机械与动力工程学院,上海200240 [2]上海交通大学巴黎卓越工程师学院,上海200240

出  处:《工业工程与管理》2024年第3期40-48,共9页Industrial Engineering and Management

基  金:国家自然科学基金资助项目(52175476,51805326);国家科技重大专项(2017-I-0007-0008)。

摘  要:随着港口码头作业量的逐步提升,港口起重机的作业效率与成本显得至关重要。为了得到在考虑维修人员的条件下更加合适的维护方案,本文以港口起重机减速箱轴承为例,基于港口起重机轴承健康状况,利用迁移学习的理论,结合无维修人员约束、单个维修人员约束和有限W个维修人员约束的情形,进行成组维修决策。首先,对源域轴承振动信号进行时频域分析与特征融合,并基于LSTM预测进行迁移学习得到目标域轴承健康指数。其次,利用三参数威布尔分布进行函数拟合,得到健康指数函数。然后,构建了成本模型、可用度模型和群体维修模型。最后,基于某港口仿真试验平台数据,分析了最优维修计划解集。With the increase of the ports'operations,the efficiency and cost of port cranes are very important.In order to get a more suitable maintenance plan under the condition of considering maintenance workforce,port crane gearbox bearings were took as an example.Based on the health conditions of port cranes'bearings,using transfer learning,combined with no maintenance workforce constraints,single maintenance workforce constraints and limited W maintenance workforce,group maintenance decisions were made.Firstly,time-frequency domain analysis and feature fusion were performed on the source domain bearing vibration signals,and the target domain bearing health index was obtained by migration learning based on LSTM prediction.Secondly,the three-parameter Weibull distribution was further used to perform function fitting to obtain the health index function.Then,a cost model,availability model and group maintenance model were constructed.Finaly,based on the data of a port simulation test platform,the optimal maintenance plan solution set was analyzed.

关 键 词:维修人员约束 迁移学习 视情维修 健康指数 成组维修 

分 类 号:TH17[机械工程—机械制造及自动化]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象