检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:赵茜 英浩 刘航 刘超[2,3] ZHAO Qian;YING Hao;LIU Hang;LIU Chao(School of Municipal and Environmental Engineering,Shandong Jianzhu University,Jinan 250100;Key Laboratory of Drinking Water Science and Technology,Research Center for Eco-Environmental Sciences,Chinese Academy of Sciences,Beijing 100085;University of Chinese Academy of Sciences,Beijing 100049)
机构地区:[1]山东建筑大学市政与环境工程学院,济南250100 [2]中国科学院生态环境研究中心,中国科学院饮用水科学与技术重点实验室,北京100085 [3]中国科学院大学,北京100049
出 处:《环境科学学报》2024年第7期213-221,共9页Acta Scientiae Circumstantiae
基 金:国家重点研发计划(No.2022YFC3203702);国家自然科学基金项目(No.52370019,52300019);中国科学院饮用水科学与技术重点实验室自由课题(No.21Z01KLDWST)。
摘 要:氯消毒过程中,氯会与水中的溶解性有机氮反应生成有机氯胺.本文研究了以脂肪胺、氨基酸和酰胺为前体物次生有机氯胺的稳定性及其与酚类化合物的反应活性.结果表明,以乙胺、甘氨酸、尿素为前体物生成的有机氯胺在接近中性p H条件下可稳定存在.有机氯胺与间苯二酚、邻苯二酚的反应活性高于苯酚.在20℃、p H 8的反应条件下,对于间苯二酚,反应活性遵循:N-氯代乙胺(二级反应速率常数k=1.82×10^(-1)L·mol^(-1)·s^(-1))>N-氯代甘氨酸(k=7.05×10^(-2)L·mol^(-1)·s^(-1))>无机一氯胺(k=5.25×10^(-2)L·mol^(-1)·s^(-1))>N-氯代尿素(k=4.21×10^(-3)L·mol^(-1)·s^(-1));对于邻苯二酚,反应活性遵循:N-氯代尿素(k=1.28×10^(-1)L·mol^(-1)·s^(-1))>无机一氯胺(k=6.10×10^(-2)L·mol^(-1)·s^(-1))>N-氯代乙胺(k=3.96×10^(-2)L·mol^(-1)·s^(-1))>N-氯代甘氨酸(k=2.88×10^(-3)L·mol^(-1)·s^(-1)).随p H值升高(p H 6~10),N-氯代乙胺与间苯二酚、N-氯代尿素与邻苯二酚的k增大.尽管有机氯胺通常被认为是“伪氯胺”,但以胺类、尿素为前体物的有机氯胺与酚类化合物的反应活性高于无机一氯胺,因此,氯化水处理过程中次生有机氯胺可与水中基质反应,影响水质安全,需予以关注.During water chlorination,chlorine reacts with dissolved organic nitrogen (DON) to form organic chloramines.This study aimed to investigate the stability of organic chloramines formed with precursors including aliphatic amines,amino acids,and amides,and their reactivity with phenolic compounds.Results showed that organic chloramines formed during chlorination of ethylamine,glycine,and urea were stable.The reactivity of organic chloramines towards resorcinol and catechol was obviously higher than phenol.At p H 8 and 20℃,the second-order rate constants for the reactions between organic chloramines and resorcinol followed the order of N-chloroethylamine (k=1.82×10^(-1) L·mol^(-1)·s^(-1))>N-chloroglycine (k=7.05×10^(-2) L·mol^(-1)·s^(-1))>monochloramine (k=5.25×10^(-2) L·mol^(-1)·s^(-1))>N-chlorourea (k=4.21×10^(-3) L·mol^(-1)·s^(-1)),while the second-order rate constants for the reactions between organic chloramines and catechol followed the order of N-chlorourea (k=1.28×10^(-1) L·mol^(-1)·s^(-1))>monochloramine (k=6.10×10^(-2)L·mol^(-1)·s^(-1))>N-chloroethylamine (k=3.96×10^(-2) L·mol^(-1)·s^(-1))>N-chloroglycine (k=2.88×10^(-3) L·mol^(-1)·s^(-1)).Moreover,the rate constants for the reactions between organic chloramines (e.g.,N-chloroethylamine and N-chlorourea) and phenolic compounds (e.g.,resorcinol and catechol) increased with increasing p H (p H 6~10).Even though organic chloramines are generally regarded as“pseudo-chloramines”,organic chloramines formed with amines and urea as precursors exhibit higher reactivity towards phenolic compounds than monochloramine.Hence,the formation of organic chloramines during water chlorination and their reactions with coexisting substances can induce potential risk,which warrants attention and further study.
分 类 号:X703[环境科学与工程—环境工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.49