基于长短期记忆神经网络的潮位缺测值填充方法研究  

Research on tidal missing data imputing with long and short term memory neural network

在线阅读下载全文

作  者:苗庆生[1] 刘玉龙[1] 韦广昊[1] 杨锦坤[1] 杨扬[1] 徐珊珊[1] MIAO Qingsheng;LIU Yulong;WEI Guanghao;YANG jinkun;YANG Yang;XU Shanshan(National Marine Data and Information Service,Tianjin 300171,China)

机构地区:[1]国家海洋信息中心,天津300171

出  处:《海洋湖沼通报(中英文)》2024年第3期39-46,共8页Transactions of Oceanology and Limnology

基  金:国家重点研发计划(2023YFC2808800);国家自然科学基金(42206226)。

摘  要:潮位数据反映了沿海海平面变化,在许多领域都有着十分重要的作用,潮位数据的缺测给使用带来不便。本文基于2017年崇武和晋江海洋站潮位数据,提出了一种基于LSTM模型(长短期记忆神经网络模型)的数据缺测值填充方法,同线性插值、样条插值等传统插值方法相比,LSTM方法表现稳定,精度较高,实现方便。尤其是在缺测时间较长时,LSTM方法明显优于传统插值方法,同时该方法同样适用于海洋站其它要素如水温缺测数据的填充。Tidal data reflects changes in coastal sea level,and plays a very important role in various fields.The lack of tidal data brings inconvenience to the use of tide level data.Based on the tidal data of the Chongwu and Jinjiang ocean stations in 2017,this paper proposed a method of filling missing data based on the LSTM model(long short-term memory neural network model).Compared with traditional interpolation methods such as linear interpolation and spline interpolation,the LSTM method had stable performance,high accuracy and easy implementation.Especially when the lack of measurement time was long,the LSTM method was obviously better than the traditional interpolation method.At the same time,this method was also suitable for filling other missing data including water temperature.

关 键 词:潮位 缺测 LSTM 填充 

分 类 号:P731.23[天文地球—海洋科学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象