检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Decio ALVES Fabio MENDONCA Sheikh Shanawaz MOSTAFA Fernando MORGADO-DIAS
机构地区:[1]University of Madeira,Campus Universitário da Penteada,9020-105,Funchal,Portugal [2]Interactive Technologies Institute/Laboratory for Robotics and Engineering Systems and Agência Regional para o Desenvolvimento da Investigação,Tecnologia e Inovação,Edif.Madeira Tecnopolo,Caminho da Penteada piso-2,9020-105,Funchal,Portugal
出 处:《Journal of Meteorological Research》2024年第3期558-569,共12页气象学报(英文版)
基 金:Supported by Interactive Technologies Institute/Larsys/Fundaçao para a Ciência e a Tecnologia(10.54499/LA/P/0083/2020,10.54499/UIDP/50009/2020,and 10.54499/UIDB/50009/2020);Agência Regional para o Desenvolvimento da Investigação,Tecnologia e Inovação,and Portuguese Technical Engineering Order(OET).
摘 要:Wind direction nowcasting is crucial in various sectors,particularly for ensuring aviation operations and safety.In this context,the TELMo(Time-series Embeddings from Language Models)model,a sophisticated deep learning architecture,has been introduced in this work for enhanced wind-direction nowcasting.Developed by using three years of data from multiple stations in the complex terrain of an international airport,TELMo incorporates the horizontal u(east-west)and v(north-south)wind components to significantly reduce forecasting errors.On a day with high wind direction variability,TELMo achieved mean absolute error values of 5.66 for 2-min,10.59 for 10-min,and 14.79 for 20-min forecasts,processed within a swift 9-ms/step timeframe.Standard degree-based analysis,in comparison,yielded lower performance,emphasizing the effectiveness of the u and v components.In contrast,a Vanilla neural network,representing a shallow-learning approach,underperformed in all analyses,highlighting the superiority of deep learning methodologies in wind direction nowcasting.TELMo is an efficient model,capable of accurately forecasting wind direction for air traffic operations,with an error less than 20°in 97.49%of the predictions,aligning with recommended international thresholds.This model design enables its applicability across various geographical locations,making it a versatile tool in global aviation meteorology.
关 键 词:wind nowcasting wind components wind direction time series prediction deep learning
分 类 号:P457.5[天文地球—大气科学及气象学]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.141.40.192